Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,101 +1,90 @@
|
|
1 |
"""
|
2 |
-
PetBull
|
3 |
-
--------------------------------------------
|
4 |
-
|
5 |
-
• Base model : Qwen/Qwen2.5-VL-7B-Instruct
|
6 |
-
• LoRA adapter: ColdSlim/PetBull-7B (master branch)
|
7 |
-
|
8 |
-
This script:
|
9 |
-
✓ loads in bfloat16 (saves ~25 % RAM vs FP16)
|
10 |
-
✓ streams weights to avoid peak memory spikes
|
11 |
-
✓ off-loads large tensors to disk when RAM is tight
|
12 |
"""
|
13 |
-
|
14 |
-
import
|
|
|
|
|
15 |
from PIL import Image
|
16 |
from transformers import AutoProcessor, AutoModelForVision2Seq
|
17 |
from peft import PeftModel
|
18 |
|
19 |
-
#
|
20 |
-
|
21 |
-
# ---------------------------------------------------------------------
|
22 |
-
os.environ["ACCELERATE_USE_SLOW_RETRIEVAL"] = "true" # safer streaming
|
23 |
|
24 |
-
#
|
25 |
-
# 1 Config
|
26 |
-
# ---------------------------------------------------------------------
|
27 |
BASE_MODEL = "Qwen/Qwen2.5-VL-7B-Instruct"
|
28 |
ADAPTER_REPO = "ColdSlim/PetBull-7B"
|
29 |
-
ADAPTER_REV = "master"
|
30 |
-
OFFLOAD_DIR = "offload"
|
31 |
-
|
32 |
-
device = "cpu" # force CPU
|
33 |
-
dtype = torch.bfloat16 # lighter than FP16 on modern CPUs
|
34 |
|
35 |
-
#
|
36 |
-
# 2
|
37 |
-
# ---------------------------------------------------------------------
|
38 |
processor = AutoProcessor.from_pretrained(BASE_MODEL, trust_remote_code=True)
|
39 |
|
40 |
-
#
|
41 |
-
# 3 Load base model with memory-savvy flags
|
42 |
-
# ---------------------------------------------------------------------
|
43 |
base = AutoModelForVision2Seq.from_pretrained(
|
44 |
BASE_MODEL,
|
45 |
torch_dtype=dtype,
|
46 |
-
low_cpu_mem_usage=True,
|
47 |
-
device_map={"": "cpu"},
|
48 |
-
offload_folder=OFFLOAD_DIR,
|
49 |
-
trust_remote_code=True
|
50 |
)
|
51 |
|
52 |
-
#
|
53 |
-
# 4 Attach LoRA
|
54 |
-
# ---------------------------------------------------------------------
|
55 |
model = PeftModel.from_pretrained(
|
56 |
base,
|
57 |
ADAPTER_REPO,
|
58 |
revision=ADAPTER_REV,
|
59 |
-
device_map={"": "cpu"}
|
60 |
).eval()
|
61 |
|
62 |
-
#
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
|
|
72 |
if image is None:
|
73 |
image = Image.new("RGB", (224, 224), color="white")
|
74 |
|
75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
with torch.no_grad():
|
77 |
-
output_ids = model.generate(
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
|
|
|
|
82 |
|
83 |
-
#
|
84 |
-
|
85 |
-
# ---------------------------------------------------------------------
|
86 |
-
with gr.Blocks(title="PetBull-7B-VL (CPU)") as demo:
|
87 |
gr.Markdown(
|
88 |
-
"##
|
89 |
"Upload a photo and/or type a question."
|
90 |
)
|
91 |
-
|
92 |
with gr.Row():
|
93 |
with gr.Column():
|
94 |
img_in = gr.Image(type="pil", label="Pet photo (optional)")
|
95 |
txt_in = gr.Textbox(lines=3, placeholder="Describe the issue…")
|
96 |
ask = gr.Button("Ask PetBull")
|
97 |
temp = gr.Slider(0.1, 1.5, 0.7, label="Temperature")
|
98 |
-
topp = gr.Slider(0.1, 1.0, 0.95, label="Top
|
99 |
max_tok = gr.Slider(32, 512, 256, step=8, label="Max tokens")
|
100 |
with gr.Column():
|
101 |
answer = gr.Textbox(lines=12, label="Assistant", interactive=False)
|
|
|
1 |
"""
|
2 |
+
PetBull‑7B‑VL demo – ZeroGPU‑ready
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
"""
|
4 |
+
import os
|
5 |
+
import torch
|
6 |
+
import spaces # <-- NEW: import spaces for ZeroGPU
|
7 |
+
import gradio as gr
|
8 |
from PIL import Image
|
9 |
from transformers import AutoProcessor, AutoModelForVision2Seq
|
10 |
from peft import PeftModel
|
11 |
|
12 |
+
# 0. Environment tweaks for Accelerate (unchanged)
|
13 |
+
os.environ["ACCELERATE_USE_SLOW_RETRIEVAL"] = "true"
|
|
|
|
|
14 |
|
15 |
+
# 1. Config
|
|
|
|
|
16 |
BASE_MODEL = "Qwen/Qwen2.5-VL-7B-Instruct"
|
17 |
ADAPTER_REPO = "ColdSlim/PetBull-7B"
|
18 |
+
ADAPTER_REV = "master"
|
19 |
+
OFFLOAD_DIR = "offload"
|
|
|
|
|
|
|
20 |
|
21 |
+
dtype = torch.float16 # <-- use float16 for GPU
|
22 |
+
# 2. Load processor
|
|
|
23 |
processor = AutoProcessor.from_pretrained(BASE_MODEL, trust_remote_code=True)
|
24 |
|
25 |
+
# 3. Load base model on CPU; stream shards to save RAM
|
|
|
|
|
26 |
base = AutoModelForVision2Seq.from_pretrained(
|
27 |
BASE_MODEL,
|
28 |
torch_dtype=dtype,
|
29 |
+
low_cpu_mem_usage=True,
|
30 |
+
device_map={"": "cpu"},
|
31 |
+
offload_folder=OFFLOAD_DIR,
|
32 |
+
trust_remote_code=True,
|
33 |
)
|
34 |
|
35 |
+
# 4. Attach LoRA adapter on CPU
|
|
|
|
|
36 |
model = PeftModel.from_pretrained(
|
37 |
base,
|
38 |
ADAPTER_REPO,
|
39 |
revision=ADAPTER_REV,
|
40 |
+
device_map={"": "cpu"},
|
41 |
).eval()
|
42 |
|
43 |
+
# Keep track of whether the model has been moved to GPU
|
44 |
+
_model_on_gpu = False
|
45 |
+
|
46 |
+
# 5. Inference helper – run on GPU when called
|
47 |
+
@spaces.GPU # <-- NEW: request GPU for this function:contentReference[oaicite:3]{index=3}
|
48 |
+
def generate_answer(image, question: str,
|
49 |
+
temperature: float = 0.7,
|
50 |
+
top_p: float = 0.95,
|
51 |
+
max_tokens: int = 256):
|
52 |
+
global _model_on_gpu
|
53 |
+
# provide a placeholder image if none was uploaded
|
54 |
if image is None:
|
55 |
image = Image.new("RGB", (224, 224), color="white")
|
56 |
|
57 |
+
# move model to GPU once
|
58 |
+
if not _model_on_gpu:
|
59 |
+
model.to("cuda")
|
60 |
+
_model_on_gpu = True
|
61 |
+
|
62 |
+
# prepare inputs on GPU
|
63 |
+
inputs = processor(text=[question], images=[image],
|
64 |
+
return_tensors="pt").to("cuda")
|
65 |
+
|
66 |
with torch.no_grad():
|
67 |
+
output_ids = model.generate(**inputs,
|
68 |
+
max_new_tokens=max_tokens,
|
69 |
+
temperature=temperature,
|
70 |
+
top_p=top_p)
|
71 |
+
# decode on CPU
|
72 |
+
outputs = output_ids.to("cpu")
|
73 |
+
return processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
74 |
|
75 |
+
# 6. Gradio UI (unchanged except for title)
|
76 |
+
with gr.Blocks(title="PetBull‑7B‑VL (ZeroGPU)") as demo:
|
|
|
|
|
77 |
gr.Markdown(
|
78 |
+
"## PetBull‑7B‑VL – Ask a Vet\n"
|
79 |
"Upload a photo and/or type a question."
|
80 |
)
|
|
|
81 |
with gr.Row():
|
82 |
with gr.Column():
|
83 |
img_in = gr.Image(type="pil", label="Pet photo (optional)")
|
84 |
txt_in = gr.Textbox(lines=3, placeholder="Describe the issue…")
|
85 |
ask = gr.Button("Ask PetBull")
|
86 |
temp = gr.Slider(0.1, 1.5, 0.7, label="Temperature")
|
87 |
+
topp = gr.Slider(0.1, 1.0, 0.95, label="Top‑p")
|
88 |
max_tok = gr.Slider(32, 512, 256, step=8, label="Max tokens")
|
89 |
with gr.Column():
|
90 |
answer = gr.Textbox(lines=12, label="Assistant", interactive=False)
|