File size: 1,272 Bytes
a2ae803
dca9cd6
a2ae803
9bd7774
a2ae803
 
9bd7774
a2ae803
 
 
 
 
9bd7774
 
 
a2ae803
 
 
 
 
 
 
 
 
 
 
 
 
9bd7774
c475c70
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
#from huggingface_hub import InferenceClient
import gradio as gr
from transformers import pipeline

# Load the model and tokenizer using the pipeline API
model_pipeline = pipeline("text-generation", model="grammarly/coedit-large")

def generate_text(input_text, temperature=0.9, max_new_tokens=50, top_p=0.95, top_k=50):
    # Generate text using the model
    output = model_pipeline(input_text, temperature=temperature, max_length=max_new_tokens + len(input_text.split()), top_p=top_p, top_k=top_k, return_full_text=False)
    # Extract and return the generated text
    return output[0]['generated_text']

    

# Define your Gradio interface
iface = gr.Interface(
    fn=generate_text,
    inputs=[
        gr.inputs.Textbox(lines=2, label="Input Text"),
        gr.inputs.Slider(minimum=0, maximum=1, step=0.01, default=0.9, label="Temperature"),
        gr.inputs.Slider(minimum=1, maximum=100, step=1, default=50, label="Max New Tokens"),
        gr.inputs.Slider(minimum=0, maximum=1, step=0.01, default=0.95, label="Top-p"),
        gr.inputs.Slider(minimum=0, maximum=100, step=1, default=50, label="Top-k")
    ],
    outputs=[gr.outputs.Textbox(label="Generated Text")],
    title="Text Generation with Grammarly Model"
)

# Launch the interface
iface.launch()