#from huggingface_hub import InferenceClient import gradio as gr from transformers import pipeline # Load the model and tokenizer using the pipeline API model_pipeline = pipeline("text-generation", model="grammarly/coedit-large") def generate_text(input_text, temperature=0.9, max_new_tokens=50, top_p=0.95, top_k=50): # Generate text using the model output = model_pipeline(input_text, temperature=temperature, max_length=max_new_tokens + len(input_text.split()), top_p=top_p, top_k=top_k, return_full_text=False) # Extract and return the generated text return output[0]['generated_text'] # Define your Gradio interface iface = gr.Interface( fn=generate_text, inputs=[ gr.inputs.Textbox(lines=2, label="Input Text"), gr.inputs.Slider(minimum=0, maximum=1, step=0.01, default=0.9, label="Temperature"), gr.inputs.Slider(minimum=1, maximum=100, step=1, default=50, label="Max New Tokens"), gr.inputs.Slider(minimum=0, maximum=1, step=0.01, default=0.95, label="Top-p"), gr.inputs.Slider(minimum=0, maximum=100, step=1, default=50, label="Top-k") ], outputs=[gr.outputs.Textbox(label="Generated Text")], title="Text Generation with Grammarly Model" ) # Launch the interface iface.launch()