Spaces:
Running
on
Zero
Running
on
Zero
File size: 21,088 Bytes
13141c3 d807efd 8963af6 3f3b681 d807efd 8963af6 d807efd 8963af6 d807efd 8963af6 d807efd 8963af6 3f3b681 d807efd 01d1b1f d807efd 01d1b1f d807efd 01d1b1f d807efd 01d1b1f d807efd 8963af6 d807efd 8963af6 d807efd 8963af6 3f3b681 d807efd 8963af6 3f3b681 d807efd 3f3b681 8963af6 850ea5b d807efd a900192 01d1b1f d807efd 8963af6 d807efd a900192 3f3b681 d807efd 3f3b681 d807efd 3f3b681 a900192 8963af6 d807efd a900192 3f3b681 d807efd 8963af6 d807efd 8963af6 d807efd 8963af6 d807efd 3f3b681 d807efd 8963af6 a900192 3f3b681 a900192 8963af6 01d1b1f 8963af6 d807efd 8963af6 d807efd 8963af6 d807efd 8963af6 a900192 f4f90db 3f3b681 f4f90db 3f3b681 f4f90db 3f3b681 f4f90db a900192 f4f90db 3f3b681 a900192 3f3b681 a900192 3f3b681 8963af6 d807efd 8963af6 a900192 01d1b1f a900192 8963af6 01d1b1f 3f3b681 8963af6 d807efd 8963af6 d807efd 8963af6 d807efd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 |
import os
os.system("pip uninstall -y gradio")
os.system("pip install gradio==3.41.0")
import os
import copy
from PIL import Image
import matplotlib
import numpy as np
import gradio as gr
from utils import load_mask, load_mask_edit
from utils_mask import process_mask_to_follow_priority, mask_union, visualize_mask_list_clean
from pathlib import Path
from PIL import Image
from functools import partial
from main import run_main
import time
LENGTH=512 #length of the square area displaying/editing images
TRANSPARENCY = 150 # transparency of the mask in display
def add_mask(mask_np_list_updated, mask_label_list):
mask_new = np.zeros_like(mask_np_list_updated[0])
mask_np_list_updated.append(mask_new)
mask_label_list.append("new")
return mask_np_list_updated, mask_label_list
def create_segmentation(mask_np_list):
viridis = matplotlib.pyplot.get_cmap(name = 'viridis', lut = len(mask_np_list))
segmentation = 0
for i, m in enumerate(mask_np_list):
color = matplotlib.colors.to_rgb(viridis(i))
color_mat = np.ones_like(m)
color_mat = np.stack([color_mat*color[0], color_mat*color[1],color_mat*color[2] ], axis = 2)
color_mat = color_mat * m[:,:,np.newaxis]
segmentation += color_mat
segmentation = Image.fromarray(np.uint8(segmentation*255))
return segmentation
def load_mask_ui(input_folder="example_tmp",load_edit = False):
if not load_edit:
mask_list, mask_label_list = load_mask(input_folder)
else:
mask_list, mask_label_list = load_mask_edit(input_folder)
mask_np_list = []
for m in mask_list:
mask_np_list. append( m.cpu().numpy())
return mask_np_list, mask_label_list
def load_image_ui(load_edit, input_folder="example_tmp"):
try:
for img_path in Path(input_folder).iterdir():
if img_path.name in ["img_512.png"]:
image = Image.open(img_path)
mask_np_list, mask_label_list = load_mask_ui(input_folder, load_edit = load_edit)
image = image.convert('RGB')
segmentation = create_segmentation(mask_np_list)
print("!!", len(mask_np_list))
max_val = len(mask_np_list)-1
sliderup = gr.Slider.update(value = 0, minimum=0, maximum=max_val, step=1, interactive=True)
return image, segmentation, mask_np_list, mask_label_list, image, sliderup
except:
print("Image folder invalid: The folder should contain image.png")
return None, None, None, None, None
# def run_edit_text(
# num_tokens,
# num_sampling_steps,
# strength,
# edge_thickness,
# tgt_prompt,
# tgt_idx,
# guidance_scale,
# input_folder="example_tmp"
# ):
# subprocess.run(["python",
# "main.py" ,
# "--text=True",
# "--name={}".format(input_folder),
# "--dpm={}".format("sd"),
# "--resolution={}".format(512),
# "--load_trained",
# "--num_tokens={}".format(num_tokens),
# "--seed={}".format(2024),
# "--guidance_scale={}".format(guidance_scale),
# "--num_sampling_step={}".format(num_sampling_steps),
# "--strength={}".format(strength),
# "--edge_thickness={}".format(edge_thickness),
# "--num_imgs={}".format(2),
# "--tgt_prompt={}".format(tgt_prompt) ,
# "--tgt_index={}".format(tgt_idx)
# ])
# return Image.open(os.path.join(input_folder, "text", "out_text_0.png"))
# def run_optimization(
# num_tokens,
# embedding_learning_rate,
# max_emb_train_steps,
# diffusion_model_learning_rate,
# max_diffusion_train_steps,
# train_batch_size,
# gradient_accumulation_steps,
# input_folder = "example_tmp"
# ):
# subprocess.run(["python",
# "main.py" ,
# "--name={}".format(input_folder),
# "--dpm={}".format("sd"),
# "--resolution={}".format(512),
# "--num_tokens={}".format(num_tokens),
# "--embedding_learning_rate={}".format(embedding_learning_rate),
# "--diffusion_model_learning_rate={}".format(diffusion_model_learning_rate),
# "--max_emb_train_steps={}".format(max_emb_train_steps),
# "--max_diffusion_train_steps={}".format(max_diffusion_train_steps),
# "--train_batch_size={}".format(train_batch_size),
# "--gradient_accumulation_steps={}".format(gradient_accumulation_steps)
# ])
# return
def transparent_paste_with_mask(backimg, foreimg, mask_np,transparency = 128):
backimg_solid_np = np.array(backimg)
bimg = backimg.copy()
fimg = foreimg.copy()
fimg.putalpha(transparency)
bimg.paste(fimg, (0,0), fimg)
bimg_np = np.array(bimg)
mask_np = mask_np[:,:,np.newaxis]
try:
new_img_np = bimg_np*mask_np + (1-mask_np)* backimg_solid_np
return Image.fromarray(new_img_np)
except:
import pdb; pdb.set_trace()
def show_segmentation(image, segmentation, flag):
if flag is False:
flag = True
mask_np = np.ones([image.size[0],image.size[1]]).astype(np.uint8)
image_edit = transparent_paste_with_mask(image, segmentation, mask_np ,transparency = TRANSPARENCY)
return image_edit, flag
else:
flag = False
return image,flag
def edit_mask_add(canvas, image, idx, mask_np_list):
mask_sel = mask_np_list[idx]
mask_new = np.uint8(canvas["mask"][:, :, 0]/ 255.)
mask_np_list_updated = []
for midx, m in enumerate(mask_np_list):
if midx == idx:
mask_np_list_updated.append(mask_union(mask_sel, mask_new))
else:
mask_np_list_updated.append(m)
priority_list = [0 for _ in range(len(mask_np_list_updated))]
priority_list[idx] = 1
mask_np_list_updated = process_mask_to_follow_priority(mask_np_list_updated, priority_list)
mask_ones = np.ones([mask_sel.shape[0], mask_sel.shape[1]]).astype(np.uint8)
segmentation = create_segmentation(mask_np_list_updated)
image_edit = transparent_paste_with_mask(image, segmentation, mask_ones ,transparency = TRANSPARENCY)
return mask_np_list_updated, image_edit
def slider_release(index, image, mask_np_list_updated, mask_label_list):
if index > len(mask_np_list_updated):
return image, "out of range"
else:
mask_np = mask_np_list_updated[index]
mask_label = mask_label_list[index]
segmentation = create_segmentation(mask_np_list_updated)
new_image = transparent_paste_with_mask(image, segmentation, mask_np, transparency = TRANSPARENCY)
return new_image, mask_label
def save_as_orig_mask(mask_np_list_updated, mask_label_list, input_folder="example_tmp"):
print(mask_np_list_updated)
try:
assert np.all(sum(mask_np_list_updated)==1)
except:
print("please check mask")
# plt.imsave( "out_mask.png", mask_list_edit[0])
import pdb; pdb.set_trace()
for midx, (mask, mask_label) in enumerate(zip(mask_np_list_updated, mask_label_list)):
# np.save(os.path.join(input_folder, "maskEDIT{}_{}.npy".format(midx, mask_label)),mask )
np.save(os.path.join(input_folder, "mask{}_{}.npy".format(midx, mask_label)),mask )
savepath = os.path.join(input_folder, "seg_current.png")
visualize_mask_list_clean(mask_np_list_updated, savepath)
def save_as_edit_mask(mask_np_list_updated, mask_label_list, input_folder="example_tmp"):
print(mask_np_list_updated)
try:
assert np.all(sum(mask_np_list_updated)==1)
except:
print("please check mask")
# plt.imsave( "out_mask.png", mask_list_edit[0])
import pdb; pdb.set_trace()
for midx, (mask, mask_label) in enumerate(zip(mask_np_list_updated, mask_label_list)):
np.save(os.path.join(input_folder, "maskEdited{}_{}.npy".format(midx, mask_label)), mask)
savepath = os.path.join(input_folder, "seg_edited.png")
visualize_mask_list_clean(mask_np_list_updated, savepath)
def image_change():
directory_path = "./example_tmp/"
for filename in os.listdir(directory_path):
file_path = os.path.join(directory_path, filename)
if os.path.isfile(file_path) or os.path.islink(file_path):
os.unlink(file_path)
elif os.path.isdir(file_path):
shutil.rmtree(file_path)
return gr.Button.update("1.2 Load original masks",visible = False), gr.Button.update("1.2 Load edited masks",visible = False), gr.Checkbox.update(label = "Show Segmentation",visible = False)
def button_clickable(is_clickable):
return gr.Button.update(interactive=is_clickable)
import shutil
if os.path.isdir("./example_tmp"):
shutil.rmtree("./example_tmp")
from segment import run_segmentation
with gr.Blocks() as demo:
image = gr.State() # store mask
image_loaded = gr.State()
segmentation = gr.State()
mask_np_list = gr.State([])
mask_label_list = gr.State([])
mask_np_list_updated = gr.State([])
true = gr.State(True)
false = gr.State(False)
block_flag = gr.State(0)
num_tokens_global = gr.State(5)
with gr.Row():
gr.Markdown("""# D-Edit""")
with gr.Tab(label="1 Edit mask"):
with gr.Row():
with gr.Column():
canvas = gr.Image(value = "./img.png", type="numpy", label="Draw Mask", show_label=True, height=LENGTH, width=LENGTH, interactive=True)
segment_button = gr.Button("1.1 Run segmentation")
text_button = gr.Button("Waiting 1.1 to complete",visible = False)
load_edit_button = gr.Button("Waiting 1.1 to complete",visible = False)
show_segment = gr.Checkbox(label = "Waiting 1.1 to complete",visible = False)
flag = gr.State(False)
show_segment.select(show_segmentation,
[image_loaded, segmentation, flag],
[canvas, flag])
#def show_more_buttons():
# return gr.Button("1.2 Load original masks",visible = True), gr.Button("1.2 Load edited masks") , gr.Checkbox(label = "Show Segmentation")
#block_flag.change(show_more_buttons, [], [text_button,load_edit_button,show_segment ])
# mask_np_list_updated.value = copy.deepcopy(mask_np_list.value) #!!
mask_np_list_updated = mask_np_list
with gr.Column():
gr.Markdown("""<p style="text-align: center; font-size: 20px">Edit Mask (Optional)</p>""")
slider = gr.Slider(0, 20, step=1, interactive=False)
label = gr.Textbox()
slider.release(slider_release,
inputs = [slider, image_loaded, mask_np_list_updated, mask_label_list],
outputs= [canvas, label]
)
add_button = gr.Button("Add")
add_button.click( edit_mask_add,
[canvas, image_loaded, slider, mask_np_list_updated] ,
[mask_np_list_updated, canvas]
)
save_button2 = gr.Button("Set and Save as edited masks")
save_button2.click( save_as_edit_mask,
[mask_np_list_updated, mask_label_list] ,
[] )
save_button = gr.Button("Set and Save as original masks")
save_button.click( save_as_orig_mask,
[mask_np_list_updated, mask_label_list] ,
[] )
back_button = gr.Button("Back to current seg")
back_button.click( load_mask_ui,
[] ,
[ mask_np_list_updated,mask_label_list] )
add_mask_button = gr.Button("Add new empty mask")
add_mask_button.click(add_mask,
[mask_np_list_updated, mask_label_list] ,
[mask_np_list_updated, mask_label_list] )
segment_button.click(run_segmentation,
[canvas] ,
[text_button,load_edit_button,show_segment] )
text_button.click(load_image_ui, [false] ,
[image_loaded, segmentation, mask_np_list, mask_label_list, canvas, slider] )
load_edit_button.click(load_image_ui, [ true] ,
[image_loaded, segmentation, mask_np_list, mask_label_list, canvas, slider] )
canvas.upload(image_change, inputs=[], outputs=[text_button,load_edit_button,show_segment])
with gr.Tab(label="2 Optimization"):
with gr.Row():
with gr.Column():
#txt_box = gr.Textbox("Click the button to start optimization...", interactive = False)
opt_flag = gr.State(0)
gr.Markdown("""<p style="text-align: center; font-size: 20px">Optimization settings (SD)</p>""")
num_tokens = gr.Number(value="5", label="num tokens to represent each object", interactive= True)
num_tokens_global = num_tokens
embedding_learning_rate = gr.Textbox(value="0.0001", label="Embedding optimization: Learning rate", interactive= True )
max_emb_train_steps = gr.Number(value="200", label="embedding optimization: Training steps", interactive= True )
diffusion_model_learning_rate = gr.Textbox(value="0.00005", label="UNet Optimization: Learning rate", interactive= True )
max_diffusion_train_steps = gr.Number(value="200", label="UNet Optimization: Learning rate: Training steps", interactive= True )
train_batch_size = gr.Number(value="5", label="Batch size", interactive= True )
gradient_accumulation_steps=gr.Number(value="5", label="Gradient accumulation", interactive= True )
add_button = gr.Button("Run optimization")
def run_optimization_wrapper (
opt_flag,
num_tokens,
embedding_learning_rate ,
max_emb_train_steps ,
diffusion_model_learning_rate ,
max_diffusion_train_steps,
train_batch_size,
gradient_accumulation_steps,
):
run_optimization = partial(
run_main,
num_tokens=int(num_tokens),
embedding_learning_rate = float(embedding_learning_rate),
max_emb_train_steps = int(max_emb_train_steps),
diffusion_model_learning_rate= float(diffusion_model_learning_rate),
max_diffusion_train_steps = int(max_diffusion_train_steps),
train_batch_size=int(train_batch_size),
gradient_accumulation_steps=int(gradient_accumulation_steps)
)
run_optimization()
print('finish')
#return gr.Button.update(value="Optimization finished!", interactive=False)
def immediate_update():
return gr.Button.update("Processing...", interactive=False)
def immediate_update2():
return gr.Button.update("Finished.", interactive=False)
add_button.click(fn=immediate_update, inputs=[], outputs=[add_button])
add_button.click(run_optimization_wrapper,
inputs = [
opt_flag,
num_tokens,
embedding_learning_rate ,
max_emb_train_steps ,
diffusion_model_learning_rate ,
max_diffusion_train_steps,
train_batch_size,
gradient_accumulation_steps
],
outputs = [])
add_button.click(fn=immediate_update2, inputs=[], outputs=[add_button])
add_button.update()
'''txt_box.change(fn=lambda x: gr.Button.update(value="Optimization Finished!", interactive=True),
inputs=[txt_box], outputs=[add_button])
def change_text(txt_box):
return gr.Textbox("Optimization Finished!", interactive = False)
def change_text2():
return gr.Textbox("Start optimization, check logs for progress...", interactive = False)
add_button.click(change_text2, [], txt_box)'''
#opt_flag.change(change_text, txt_box, txt_box)
with gr.Tab(label="3 Editing"):
with gr.Tab(label="3.1 Text-based editing"):
with gr.Row():
with gr.Column():
canvas_text_edit = gr.Image(value = None, type = "pil", label="Editing results", show_label=True)
# canvas_text_edit = gr.Gallery(label = "Edited results")
with gr.Column():
gr.Markdown("""<p style="text-align: center; font-size: 20px">Editing setting (SD)</p>""")
tgt_prompt = gr.Textbox(value="White bag", label="Editing: Text prompt", interactive= True )
tgt_index = gr.Number(value="0", label="Editing: Object index", interactive= True )
guidance_scale = gr.Textbox(value="6", label="Editing: CFG guidance scale", interactive= True )
num_sampling_steps = gr.Number(value="50", label="Editing: Sampling steps", interactive= True )
edge_thickness = gr.Number(value="10", label="Editing: Edge thickness", interactive= True )
strength = gr.Textbox(value="0.5", label="Editing: Mask strength", interactive= True )
add_button = gr.Button("Run Editing")
def run_edit_text_wrapper(
num_tokens,
guidance_scale,
num_sampling_steps ,
strength ,
edge_thickness,
tgt_prompt ,
tgt_index
):
run_edit_text = partial(
run_main,
load_trained=True,
text=True,
num_tokens = int(num_tokens_global.value),
guidance_scale = float(guidance_scale),
num_sampling_steps = int(num_sampling_steps),
strength = float(strength),
edge_thickness = int(edge_thickness),
num_imgs = 1,
tgt_prompt = tgt_prompt,
tgt_index = int(tgt_index)
)
return run_edit_text()
add_button.click(run_edit_text_wrapper,
inputs = [num_tokens_global,
guidance_scale,
num_sampling_steps,
strength ,
edge_thickness,
tgt_prompt ,
tgt_index
],
outputs = [canvas_text_edit],queue=True,
)
def load_pil_img():
from PIL import Image
return Image.open("example_tmp/text/out_text_0.png")
load_button = gr.Button("Load results")
load_button.click(load_pil_img,
inputs = [],
outputs = [canvas_text_edit]
)
demo.queue().launch(share=True, debug=True)
|