Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,160 Bytes
d4bd7a0 d807efd 111753d e32c994 d807efd 8963af6 3f3b681 18fd109 d807efd 18fd109 d807efd ca0b5e1 111753d 872b038 577723e 986c45d 577723e 6837a23 986c45d 577723e 872b038 d807efd 8963af6 842da73 6cf97e1 d807efd 38cec45 dde1106 d807efd dde1106 d807efd 0ccc741 dde1106 0f8c3e9 041b7a7 d807efd 8963af6 3f3b681 d807efd 8963af6 3f3b681 d807efd 3f3b681 3df76ef 3f3b681 5569753 4462d7b 8963af6 cda7518 877fe46 850ea5b cda7518 cbca4d6 d807efd a900192 01d1b1f d807efd e0d2e28 d807efd 8963af6 4462d7b a264a72 cbca4d6 041b7a7 d807efd ca0b5e1 a264a72 a900192 0f8c3e9 dfeb31b 3f3b681 30872dc d807efd e0d2e28 dbf7e57 cbca4d6 a900192 8963af6 a106f50 b5b7d1c a106f50 b5b7d1c a106f50 d807efd 041b7a7 a900192 a3221b4 046b275 9f274bd a900192 f4f90db 3f3b681 f4f90db d75d92e daaf697 046b275 a3221b4 046b275 dce7d46 daaf697 79bd376 041b7a7 31f50c5 7a71877 84c1347 041b7a7 329efed ca0b5e1 8963af6 e0d2e28 b5b7d1c 8963af6 5569753 8963af6 d807efd 8963af6 dde1106 a106f50 b5b7d1c a106f50 8963af6 041b7a7 a900192 21595c2 a900192 21595c2 a900192 01d1b1f a900192 5569753 79bd376 c288323 30872dc 4462d7b 30872dc 21595c2 01d1b1f e74cea2 01d1b1f 30872dc dde1106 e74cea2 329efed 8963af6 872b038 8963af6 d807efd fc5869e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 |
import os
import copy
#import spaces
from main import run_main
from PIL import Image
import matplotlib
import numpy as np
import gradio as gr
from utils import load_mask, load_mask_edit
from utils_mask import process_mask_to_follow_priority, mask_union, visualize_mask_list_clean
from pathlib import Path
from PIL import Image
from functools import partial
import time
LENGTH=512 #length of the square area displaying/editing images
TRANSPARENCY = 150 # transparency of the mask in display
def add_mask(mask_np_list_updated, mask_label_list):
mask_new = np.zeros_like(mask_np_list_updated[0])
mask_np_list_updated.append(mask_new)
mask_label_list.append("new")
return mask_np_list_updated, mask_label_list
def create_segmentation(mask_np_list):
viridis = matplotlib.pyplot.get_cmap(name = 'viridis', lut = len(mask_np_list))
segmentation = 0
for i, m in enumerate(mask_np_list):
color = matplotlib.colors.to_rgb(viridis(i))
color_mat = np.ones_like(m)
color_mat = np.stack([color_mat*color[0], color_mat*color[1],color_mat*color[2] ], axis = 2)
color_mat = color_mat * m[:,:,np.newaxis]
segmentation += color_mat
segmentation = Image.fromarray(np.uint8(segmentation*255))
return segmentation
#@spaces.GPU
def run_segmentation_wrapper(image):
try:
image, mask_np_list,mask_label_list = run_segmentation(image)
#image = image.convert('RGB')
segmentation = create_segmentation(mask_np_list)
print("!!", len(mask_np_list))
max_val = len(mask_np_list)-1
sliderup = gr.Slider(value = 0, minimum=0, maximum=max_val, step=1, visible=True)
gr.Info('Segmentation finish. Select mask id and move to the next step.')
return image, segmentation, mask_np_list, mask_label_list, image, sliderup, sliderup , 'Segmentation finish. Select mask id and move to the next step.'
except:
sliderup = gr.Slider(value = 0, minimum=0, maximum=1, step=1, visible=False)
gr.Warning('Please upload an image before proceeding.')
return None,None,None,None,None, sliderup, sliderup , 'Please upload an image before proceeding.'
def transparent_paste_with_mask(backimg, foreimg, mask_np,transparency = 128):
backimg_solid_np = np.array(backimg)
bimg = backimg.copy()
fimg = foreimg.copy()
fimg.putalpha(transparency)
bimg.paste(fimg, (0,0), fimg)
bimg_np = np.array(bimg)
mask_np = mask_np[:,:,np.newaxis]
new_img_np = bimg_np*mask_np + (1-mask_np)* backimg_solid_np
return Image.fromarray(np.uint8(new_img_np))
def show_segmentation(image, segmentation, flag):
if flag is False:
flag = True
mask_np = np.ones([image.size[0],image.size[1]]).astype(np.uint8)
image_edit = transparent_paste_with_mask(image, segmentation, mask_np ,transparency = TRANSPARENCY)
return image_edit, flag
else:
flag = False
return image,flag
def edit_mask_add(canvas, image, idx, mask_np_list):
mask_sel = mask_np_list[idx]
mask_new = np.uint8(canvas["mask"][:, :, 0]/ 255.)
mask_np_list_updated = []
for midx, m in enumerate(mask_np_list):
if midx == idx:
mask_np_list_updated.append(mask_union(mask_sel, mask_new))
else:
mask_np_list_updated.append(m)
priority_list = [0 for _ in range(len(mask_np_list_updated))]
priority_list[idx] = 1
mask_np_list_updated = process_mask_to_follow_priority(mask_np_list_updated, priority_list)
mask_ones = np.ones([mask_sel.shape[0], mask_sel.shape[1]]).astype(np.uint8)
segmentation = create_segmentation(mask_np_list_updated)
image_edit = transparent_paste_with_mask(image, segmentation, mask_ones ,transparency = TRANSPARENCY)
return mask_np_list_updated, image_edit
def slider_release(index, image, mask_np_list_updated, mask_label_list):
if index > len(mask_np_list_updated)-1:
return image, "out of range", ""
else:
mask_np = mask_np_list_updated[index]
mask_label = mask_label_list[index]
index = mask_label.rfind('-')
mask_label = mask_label[:index]
if mask_label == 'handbag':
mask_prompt = "white handbag"
elif mask_label == 'person':
mask_prompt = "young man"
elif mask_label == 'wall-other-merged':
mask_prompt = "white wall"
elif mask_label == 'table-merged':
mask_prompt = "table"
else:
mask_prompt = mask_label
segmentation = create_segmentation(mask_np_list_updated)
new_image = transparent_paste_with_mask(image, segmentation, mask_np, transparency = TRANSPARENCY)
gr.Info('Edit '+ mask_label)
return new_image, mask_label, mask_prompt
def image_change():
return gr.Slider(value = 0, minimum=0, maximum=1, step=1, visible=False),gr.Button("Step 3. Run Editing (Check log for progress.)",interactive = False)
def save_as_orig_mask(mask_np_list_updated, mask_label_list, input_folder="example_tmp"):
print(mask_np_list_updated)
try:
assert np.all(sum(mask_np_list_updated)==1)
except:
print("please check mask")
# plt.imsave( "out_mask.png", mask_list_edit[0])
import pdb; pdb.set_trace()
for midx, (mask, mask_label) in enumerate(zip(mask_np_list_updated, mask_label_list)):
# np.save(os.path.join(input_folder, "maskEDIT{}_{}.npy".format(midx, mask_label)),mask )
np.save(os.path.join(input_folder, "mask{}_{}.npy".format(midx, mask_label)),mask )
savepath = os.path.join(input_folder, "seg_current.png")
visualize_mask_list_clean(mask_np_list_updated, savepath)
def save_as_edit_mask(mask_np_list_updated, mask_label_list, input_folder="example_tmp"):
print(mask_np_list_updated)
try:
assert np.all(sum(mask_np_list_updated)==1)
except:
print("please check mask")
# plt.imsave( "out_mask.png", mask_list_edit[0])
import pdb; pdb.set_trace()
for midx, (mask, mask_label) in enumerate(zip(mask_np_list_updated, mask_label_list)):
np.save(os.path.join(input_folder, "maskEdited{}_{}.npy".format(midx, mask_label)), mask)
savepath = os.path.join(input_folder, "seg_edited.png")
visualize_mask_list_clean(mask_np_list_updated, savepath)
def button_clickable(is_clickable):
return gr.Button(interactive=is_clickable)
def load_pil_img():
from PIL import Image
return Image.open("example_tmp/text/out_text_0.png")
def change_image(impath):
return gr.Image(value = impath, type="numpy", height=LENGTH, width=LENGTH, interactive=True)
import shutil
if os.path.isdir("./example_tmp"):
shutil.rmtree("./example_tmp")
from segment import run_segmentation
with gr.Blocks() as demo:
image = gr.State() # store mask
image_loaded = gr.State()
segmentation = gr.State()
mask_np_list = gr.State([])
mask_label_list = gr.State([])
mask_np_list_updated = gr.State([])
true = gr.State(True)
false = gr.State(False)
block_flag = gr.State(0)
num_tokens_global = gr.State(5)
with gr.Row():
gr.Markdown("""# D-Edit""")
with gr.Tab(label="d-edit"):
with gr.Row():
with gr.Column():
canvas = gr.Image(value = "./img.png", type="numpy", label="Draw Mask", show_label=True, height=LENGTH, width=LENGTH, interactive=True)
gr.Markdown("""<p style="text-align: left; font-size: 16px">Each image requires a single segmentation and optimization operation.\nAfterwards, you can modify the mask ID and prompt for image editing. \nThe D-edit link is: https://arxiv.org/abs/2403.04880v2"</p>""")
with gr.Column():
result_info0 = gr.Text(label="Response")
segment_button = gr.Button("Step 1. Run segmentation")
flag = gr.State(False)
# mask_np_list_updated.value = copy.deepcopy(mask_np_list.value) #!!
mask_np_list_updated = mask_np_list
gr.Markdown("""<p style="text-align: center; font-size: 20px">Edit Mask (Optional)</p>""")
slider = gr.Slider(0, 20, step=1, label = 'mask id', visible=False)
label = gr.Text(label='label')
#with gr.Tab(label="2 Optimization"):
# with gr.Row():
# with gr.Column():
result_info = gr.Text(label="Response")
opt_flag = gr.State(0)
gr.Markdown("""<p style="text-align: center; font-size: 20px">Optimization settings (SD)</p>""")
with gr.Accordion(label="Advanced settings", open=False):
num_tokens = gr.Number(value="5", label="num tokens to represent each object", interactive= True)
num_tokens_global = num_tokens
embedding_learning_rate = gr.Textbox(value="0.00025", label="Embedding optimization: Learning rate", interactive= True )
max_emb_train_steps = gr.Number(value="6", label="embedding optimization: Training steps", interactive= True )
diffusion_model_learning_rate = gr.Textbox(value="0.0002", label="UNet Optimization: Learning rate", interactive= True )
max_diffusion_train_steps = gr.Number(value="28", label="UNet Optimization: Learning rate: Training steps", interactive= True )
train_batch_size = gr.Number(value="20", label="Batch size", interactive= True )
gradient_accumulation_steps=gr.Number(value="2", label="Gradient accumulation", interactive= True )
add_button = gr.Button("Step 2. Run optimization")
def run_optimization_wrapper (
mask_np_list,
mask_label_list,
image,
opt_flag,
num_tokens,
embedding_learning_rate ,
max_emb_train_steps ,
diffusion_model_learning_rate ,
max_diffusion_train_steps,
train_batch_size,
gradient_accumulation_steps,
):
try:
run_optimization = partial(
run_main,
mask_np_list=mask_np_list,
mask_label_list=mask_label_list,
image_gt=np.array(image),
num_tokens=int(num_tokens),
embedding_learning_rate = float(embedding_learning_rate),
max_emb_train_steps = int(max_emb_train_steps),
diffusion_model_learning_rate= float(diffusion_model_learning_rate),
max_diffusion_train_steps = int(max_diffusion_train_steps),
train_batch_size=int(train_batch_size),
gradient_accumulation_steps=int(gradient_accumulation_steps)
)
run_optimization()
gr.Info("Optimization Finished! Move to the next step.")
return "Optimization finished! Move to the next step.",gr.Button("Step 3. Run Editing (Check log for progress.)",interactive = True)
except Exception as e:
print(e)
gr.Error("e")
return "Error: use a smaller batch size or try latter.",gr.Button("Step 3. Run Editing (Check log for progress.)",interactive = False)
#with gr.Tab(label="3 Editing"):
with gr.Tab(label="Text-based editing"):
with gr.Row():
with gr.Column():
canvas_text_edit = gr.Image(value = None, type = "pil", label="Editing results", show_label=True,visible = True)
# canvas_text_edit = gr.Gallery(label = "Edited results")
with gr.Column():
gr.Markdown("""<p style="text-align: center; font-size: 20px">Editing setting (SD)</p>""")
tgt_prompt = gr.Textbox(value="text prompt", label="Editing: Text prompt", interactive= True )
with gr.Accordion(label="Advanced settings", open=False):
slider2 = gr.Slider(0, 20, step=1, label = 'mask id', visible=False)
guidance_scale = gr.Textbox(value="5", label="Editing: CFG guidance scale", interactive= True )
num_sampling_steps = gr.Number(value="20", label="Editing: Sampling steps", interactive= True )
edge_thickness = gr.Number(value="10", label="Editing: Edge thickness", interactive= True )
strength = gr.Textbox(value="0.5", label="Editing: Mask strength", interactive= True )
add_button2 = gr.Button("Step 3. Run Editing (Check log for progress.)",interactive = False)
def run_edit_text_wrapper(
mask_np_list,
mask_label_list,
image,
num_tokens,
guidance_scale,
num_sampling_steps ,
strength ,
edge_thickness,
tgt_prompt ,
tgt_index
):
run_edit_text = partial(
run_main,
mask_np_list=mask_np_list,
mask_label_list=mask_label_list,
image_gt=np.array(image),
load_trained=True,
text=True,
num_tokens = int(num_tokens_global.value),
guidance_scale = float(guidance_scale),
num_sampling_steps = int(num_sampling_steps),
strength = float(strength),
edge_thickness = int(edge_thickness),
num_imgs = 1,
tgt_prompt = tgt_prompt,
tgt_index = int(tgt_index)
)
run_edit_text()
gr.Info('Image editing completed.')
return load_pil_img()
example_inps = [['./img.png'],['./img2.png']]
gr.Examples(examples=example_inps, inputs=[img_path],
label='examples', cache_examples='lazy', outputs=[output_image],
fn=change_image)
canvas.upload(image_change, inputs=[], outputs=[slider,add_button2])
add_button.click(run_optimization_wrapper,
inputs = [
mask_np_list,
mask_label_list,
image_loaded,
opt_flag,
num_tokens,
embedding_learning_rate ,
max_emb_train_steps ,
diffusion_model_learning_rate ,
max_diffusion_train_steps,
train_batch_size,
gradient_accumulation_steps
],
outputs = [result_info,add_button2], api_name=False, concurrency_limit=45)
add_button2.click(run_edit_text_wrapper,
inputs = [ mask_np_list,
mask_label_list,
image_loaded,num_tokens_global,
guidance_scale,
num_sampling_steps,
strength ,
edge_thickness,
tgt_prompt ,
slider2
],
outputs = [canvas_text_edit],queue=True)
slider.release(slider_release,
inputs = [slider, image_loaded, mask_np_list_updated, mask_label_list],
outputs= [canvas, label,tgt_prompt])
slider.change(
lambda x: x,
inputs=[slider],
outputs=[slider2]
)
segment_button.click(run_segmentation_wrapper,
[canvas] ,
[image_loaded, segmentation, mask_np_list, mask_label_list, canvas, slider, slider2, result_info0] )
demo.queue().launch(debug=True)
|