File size: 15,920 Bytes
d4bd7a0
a893db0
 
d807efd
 
 
 
 
 
 
 
 
 
 
8963af6
 
3f3b681
d807efd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca0b5e1
d807efd
872b038
577723e
 
 
 
 
 
 
 
 
6837a23
577723e
872b038
d807efd
 
842da73
 
 
d807efd
 
 
 
 
 
 
 
8963af6
842da73
6cf97e1
d807efd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8963af6
38cec45
d807efd
 
 
 
 
 
 
0f8c3e9
 
d807efd
8963af6
3f3b681
d807efd
 
 
 
 
 
 
 
 
 
 
 
 
8963af6
3f3b681
d807efd
 
 
 
 
 
 
 
 
 
 
3f3b681
 
 
3df76ef
3f3b681
 
5569753
 
 
 
 
8963af6
 
 
 
cda7518
877fe46
 
850ea5b
cda7518
cbca4d6
d807efd
 
 
 
 
 
 
 
 
a900192
01d1b1f
d807efd
 
 
 
 
 
8963af6
cbca4d6
877fe46
a900192
3f3b681
ca0b5e1
d807efd
ca0b5e1
8963af6
 
d807efd
a900192
0f8c3e9
dfeb31b
d807efd
 
 
 
3f3b681
0f8c3e9
d807efd
8963af6
 
 
cbca4d6
a900192
 
8963af6
 
01d1b1f
d75d92e
 
d807efd
d75d92e
 
d807efd
8963af6
 
d807efd
8963af6
a900192
a3221b4
046b275
9f274bd
a900192
f4f90db
 
 
 
 
 
3f3b681
f4f90db
d75d92e
daaf697
046b275
a3221b4
046b275
dce7d46
daaf697
 
 
 
 
 
 
 
 
 
877fe46
d75d92e
 
329efed
3f3b681
329efed
877fe46
3f3b681
f4f90db
 
335e05e
046b275
 
a900192
f4f90db
 
 
 
 
 
 
 
a893db0
329efed
a893db0
 
877fe46
ca0b5e1
8963af6
 
 
 
 
 
5569753
8963af6
d807efd
8963af6
 
 
 
0f8c3e9
cda7518
8963af6
 
 
 
 
877fe46
a900192
21595c2
 
 
a900192
 
 
 
 
 
 
 
 
 
 
21595c2
 
 
a900192
 
01d1b1f
a900192
 
 
 
 
 
 
 
5569753
c288323
8963af6
01d1b1f
21595c2
 
 
01d1b1f
 
 
 
 
e74cea2
01d1b1f
c288323
8963af6
d807efd
e74cea2
 
 
 
 
329efed
8963af6
872b038
 
 
8963af6
d807efd
 
fc5869e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
import os
# os.system("pip uninstall -y gradio")
# os.system("pip install gradio==3.41.0")

import os
import copy
from PIL import Image
import matplotlib 
import numpy as np
import gradio as gr
from utils import load_mask, load_mask_edit
from utils_mask import process_mask_to_follow_priority, mask_union, visualize_mask_list_clean
from pathlib import Path
from PIL import Image
from functools import partial
from main import run_main
import time
LENGTH=512 #length of the square area displaying/editing images
TRANSPARENCY = 150 # transparency of the mask in display

def add_mask(mask_np_list_updated, mask_label_list):
    mask_new = np.zeros_like(mask_np_list_updated[0])
    mask_np_list_updated.append(mask_new)
    mask_label_list.append("new")
    return mask_np_list_updated, mask_label_list

def create_segmentation(mask_np_list):
    viridis = matplotlib.pyplot.get_cmap(name = 'viridis', lut = len(mask_np_list))
    segmentation = 0
    for i, m  in enumerate(mask_np_list):
        color = matplotlib.colors.to_rgb(viridis(i))
        color_mat = np.ones_like(m)                                                                            
        color_mat = np.stack([color_mat*color[0], color_mat*color[1],color_mat*color[2] ], axis = 2)
        color_mat = color_mat * m[:,:,np.newaxis]
        segmentation += color_mat
    segmentation = Image.fromarray(np.uint8(segmentation*255))
    return segmentation



def run_segmentation_wrapper(image):
    try:
        image, mask_np_list,mask_label_list = run_segmentation(image)
        #image = image.convert('RGB')
        segmentation = create_segmentation(mask_np_list)
        print("!!", len(mask_np_list))  
        max_val = len(mask_np_list)-1
        sliderup = gr.Slider(value = 0, minimum=0, maximum=max_val, step=1, visible=True)
        return image, segmentation, mask_np_list, mask_label_list, image, sliderup, sliderup , 'Segmentation finish. Select mask id and move to the next step.'
    except:
        sliderup = gr.Slider(value = 0, minimum=0, maximum=1, step=1, visible=False)
        return None,None,None,None,None, sliderup, sliderup , 'Please upload an image before proceeding.'
        

def transparent_paste_with_mask(backimg, foreimg, mask_np,transparency = 128):
    print(type(backimg))
    print(type(foreimg))
    print(type(mask_np))
    backimg_solid_np =  np.array(backimg)
    bimg = backimg.copy()
    fimg = foreimg.copy()
    fimg.putalpha(transparency)
    bimg.paste(fimg, (0,0), fimg)

    bimg_np = np.array(bimg)
    mask_np = mask_np[:,:,np.newaxis]

    new_img_np = bimg_np*mask_np + (1-mask_np)* backimg_solid_np
    return Image.fromarray(np.uint8(new_img_np))

def show_segmentation(image, segmentation, flag):
    if flag is False:
        flag = True
        mask_np = np.ones([image.size[0],image.size[1]]).astype(np.uint8)
        image_edit = transparent_paste_with_mask(image, segmentation, mask_np ,transparency = TRANSPARENCY)
        return image_edit, flag
    else:
        flag = False
        return image,flag

def edit_mask_add(canvas,  image, idx, mask_np_list):
    mask_sel = mask_np_list[idx]
    mask_new = np.uint8(canvas["mask"][:, :, 0]/ 255.)
    mask_np_list_updated = []
    for midx, m  in enumerate(mask_np_list):
        if midx == idx:
            mask_np_list_updated.append(mask_union(mask_sel, mask_new))
        else:
            mask_np_list_updated.append(m)
    
    priority_list = [0 for _ in range(len(mask_np_list_updated))]
    priority_list[idx] = 1
    mask_np_list_updated = process_mask_to_follow_priority(mask_np_list_updated, priority_list)
    mask_ones = np.ones([mask_sel.shape[0], mask_sel.shape[1]]).astype(np.uint8)
    segmentation = create_segmentation(mask_np_list_updated)
    image_edit = transparent_paste_with_mask(image, segmentation, mask_ones ,transparency = TRANSPARENCY)
    return mask_np_list_updated, image_edit

def slider_release(index, image,  mask_np_list_updated, mask_label_list):

    if index > len(mask_np_list_updated)-1:
        return image, "out of range"
    else:
        mask_np = mask_np_list_updated[index]
        mask_label = mask_label_list[index]
        segmentation = create_segmentation(mask_np_list_updated)
        new_image = transparent_paste_with_mask(image, segmentation, mask_np, transparency = TRANSPARENCY)
    return new_image, mask_label
def image_change():
    return gr.Slider(value = 0, minimum=0, maximum=1, step=1, visible=False)

def save_as_orig_mask(mask_np_list_updated, mask_label_list, input_folder="example_tmp"):
    print(mask_np_list_updated)
    try: 
        assert np.all(sum(mask_np_list_updated)==1)
    except:
        print("please check mask")
        # plt.imsave( "out_mask.png", mask_list_edit[0]) 
        import pdb; pdb.set_trace()
        
    for midx, (mask, mask_label) in enumerate(zip(mask_np_list_updated, mask_label_list)):
        # np.save(os.path.join(input_folder, "maskEDIT{}_{}.npy".format(midx, mask_label)),mask )
        np.save(os.path.join(input_folder, "mask{}_{}.npy".format(midx, mask_label)),mask )
    savepath = os.path.join(input_folder, "seg_current.png")
    visualize_mask_list_clean(mask_np_list_updated, savepath)
    
def save_as_edit_mask(mask_np_list_updated, mask_label_list, input_folder="example_tmp"):
    print(mask_np_list_updated)
    try: 
        assert np.all(sum(mask_np_list_updated)==1)
    except:
        print("please check mask")
        # plt.imsave( "out_mask.png", mask_list_edit[0]) 
        import pdb; pdb.set_trace()
    for midx, (mask, mask_label) in enumerate(zip(mask_np_list_updated, mask_label_list)):
        np.save(os.path.join(input_folder, "maskEdited{}_{}.npy".format(midx, mask_label)), mask)
    savepath = os.path.join(input_folder, "seg_edited.png")
    visualize_mask_list_clean(mask_np_list_updated, savepath)
  


def button_clickable(is_clickable):
    return gr.Button(interactive=is_clickable)



def load_pil_img():
    from PIL import Image
    return Image.open("example_tmp/text/out_text_0.png")

import shutil
if os.path.isdir("./example_tmp"):
    shutil.rmtree("./example_tmp")




from segment import run_segmentation

with gr.Blocks() as demo:
    image = gr.State() # store mask
    image_loaded = gr.State()
    segmentation    = gr.State()

    mask_np_list    = gr.State([])
    mask_label_list = gr.State([])
    mask_np_list_updated = gr.State([])
    true    = gr.State(True)
    false    = gr.State(False)
    block_flag = gr.State(0)
    num_tokens_global = gr.State(5)
    with gr.Row():
        gr.Markdown("""# D-Edit""")

    with gr.Tab(label="1 Edit mask"):
        with gr.Row():
            with gr.Column():
                canvas = gr.Image(value = "./img.png", type="numpy",  label="Draw Mask", show_label=True, height=LENGTH, width=LENGTH, interactive=True)
                result_info0 = gr.Text(label="Response")
                segment_button  = gr.Button("Run segmentation")
                


                flag = gr.State(False)

            # mask_np_list_updated.value = copy.deepcopy(mask_np_list.value) #!!
            mask_np_list_updated = mask_np_list
            with gr.Column():
                gr.Markdown("""<p style="text-align: center; font-size: 20px">Edit Mask (Optional)</p>""")
                slider =  gr.Slider(0, 20, step=1, label = 'mask id',  visible=False)
                label = gr.Text(label='label')
                slider.release(slider_release, 
                        inputs = [slider, image_loaded,   mask_np_list_updated, mask_label_list], 
                        outputs= [canvas, label]
                    )

            canvas.upload(image_change, inputs=[], outputs=[slider])
                
    with gr.Tab(label="2 Optimization"):
        with gr.Row():
            with gr.Column():
                result_info = gr.Text(label="Response")
                
                opt_flag = gr.State(0)
                gr.Markdown("""<p style="text-align: center; font-size: 20px">Optimization settings (SD)</p>""")
                num_tokens = gr.Number(value="5", label="num tokens to represent each object", interactive= True)
                num_tokens_global = num_tokens
                embedding_learning_rate = gr.Textbox(value="0.00005", label="Embedding optimization: Learning rate", interactive= True )
                max_emb_train_steps =  gr.Number(value="100", label="embedding optimization: Training steps", interactive= True )
                
                diffusion_model_learning_rate = gr.Textbox(value="0.00002", label="UNet Optimization: Learning rate", interactive= True )
                max_diffusion_train_steps = gr.Number(value="100", label="UNet Optimization: Learning rate: Training steps", interactive= True )
                
                train_batch_size = gr.Number(value="5", label="Batch size", interactive= True )
                gradient_accumulation_steps=gr.Number(value="5", label="Gradient accumulation", interactive= True )
                
                add_button  = gr.Button("Run optimization")
                def run_optimization_wrapper (
                        mask_np_list,
                        mask_label_list,
                        image,
                        opt_flag,                     
                        num_tokens,
                        embedding_learning_rate , 
                        max_emb_train_steps , 
                        diffusion_model_learning_rate , 
                        max_diffusion_train_steps,
                        train_batch_size,
                        gradient_accumulation_steps,
                ):
                    try:
                        run_optimization = partial(
                            run_main,  
                            mask_np_list=mask_np_list, 
                            mask_label_list=mask_label_list,
                            image_gt=np.array(image),
                            num_tokens=int(num_tokens),
                            embedding_learning_rate = float(embedding_learning_rate), 
                            max_emb_train_steps = int(max_emb_train_steps), 
                            diffusion_model_learning_rate= float(diffusion_model_learning_rate), 
                            max_diffusion_train_steps = int(max_diffusion_train_steps),
                            train_batch_size=int(train_batch_size),
                            gradient_accumulation_steps=int(gradient_accumulation_steps)
                        )
                        run_optimization()
                        print('finish')
                        return "Optimization finished! Move to the next step."
                    except:
                        return "CUDA out of memory, use a smaller batch size or try another picture."

                
                def immediate_update():
                    return gr.Button("Run Optimization (Check log for progress.).", interactive=True)
                
                add_button.click(run_optimization_wrapper, 
                        inputs = [
                            mask_np_list,
                            mask_label_list,
                            image_loaded,
                            opt_flag,
                            num_tokens,
                            embedding_learning_rate , 
                            max_emb_train_steps , 
                            diffusion_model_learning_rate , 
                            max_diffusion_train_steps,
                            train_batch_size,
                            gradient_accumulation_steps
                        ], 
                        outputs = [result_info], api_name=False, concurrency_limit=45)
                add_button.click(fn=immediate_update, inputs=[], outputs=[add_button])
                #add_button.update()
                def change_text():
                    return gr.Textbox("Optimization Finished! Move to the next step.", interactive = False)


    with gr.Tab(label="3 Editing"):
        with gr.Tab(label="3.1 Text-based editing"):
        
            with gr.Row():
                with gr.Column():
                    canvas_text_edit = gr.Image(value = None, type = "pil", label="Editing results", show_label=True,visible = True)
                    # canvas_text_edit = gr.Gallery(label = "Edited results")
                
                with gr.Column():
                    gr.Markdown("""<p style="text-align: center; font-size: 20px">Editing setting (SD)</p>""")
                    
                    tgt_prompt =  gr.Textbox(value="White bag", label="Editing: Text prompt", interactive= True )
                    slider2 = gr.Slider(0, 20, step=1, label = 'mask id',  visible=False)
                    #tgt_index = gr.Number(value="0", label="Editing: Object index", interactive= True )
                    guidance_scale = gr.Textbox(value="6", label="Editing: CFG guidance scale", interactive= True )
                    num_sampling_steps = gr.Number(value="50", label="Editing: Sampling steps", interactive= True )
                    edge_thickness = gr.Number(value="10", label="Editing: Edge thickness", interactive= True )
                    strength = gr.Textbox(value="0.5", label="Editing: Mask strength", interactive= True )
                    
                    add_button  = gr.Button("Run Editing (Check log for progress.)")
                    def run_edit_text_wrapper(
                            mask_np_list,
                            mask_label_list,
                            image,
                            num_tokens,
                            guidance_scale,
                            num_sampling_steps ,
                            strength ,
                            edge_thickness,
                            tgt_prompt ,
                            tgt_index
                    ):
                            
                        run_edit_text = partial(
                            run_main,
                            mask_np_list=mask_np_list, 
                            mask_label_list=mask_label_list,
                            image_gt=np.array(image),
                            load_trained=True,
                            text=True,
                            num_tokens = int(num_tokens_global.value),
                            guidance_scale = float(guidance_scale),
                            num_sampling_steps = int(num_sampling_steps),
                            strength = float(strength),
                            edge_thickness = int(edge_thickness),
                            num_imgs = 1,
                            tgt_prompt = tgt_prompt,
                            tgt_index = int(tgt_index)
                        )
                        run_edit_text()
                        return load_pil_img()
                        
                    add_button.click(run_edit_text_wrapper, 
                        inputs = [  mask_np_list,
                                    mask_label_list,
                                    image_loaded,num_tokens_global,
                                    guidance_scale,
                                    num_sampling_steps,
                                    strength ,
                                    edge_thickness,
                                    tgt_prompt ,
                                    slider2
                                ],        
                        outputs = [canvas_text_edit],queue=True,
                    )
                    
        slider.change(
            lambda x: x,
            inputs=[slider],
            outputs=[slider2]
        )


        segment_button.click(run_segmentation_wrapper, 
                [canvas] ,
                [image_loaded, segmentation,  mask_np_list, mask_label_list, canvas, slider, slider2, result_info0] )



demo.queue().launch(debug=True)