d-edit / app.py
niulx's picture
Update app.py
3d07505 verified
import os
import copy
#import spaces
from main import run_main
from PIL import Image
import matplotlib
import numpy as np
import gradio as gr
from utils import load_mask, load_mask_edit
from utils_mask import process_mask_to_follow_priority, mask_union, visualize_mask_list_clean
from pathlib import Path
from PIL import Image
from functools import partial
import time
LENGTH=512 #length of the square area displaying/editing images
TRANSPARENCY = 150 # transparency of the mask in display
def add_mask(mask_np_list_updated, mask_label_list):
mask_new = np.zeros_like(mask_np_list_updated[0])
mask_np_list_updated.append(mask_new)
mask_label_list.append("new")
return mask_np_list_updated, mask_label_list
def create_segmentation(mask_np_list):
viridis = matplotlib.pyplot.get_cmap(name = 'viridis', lut = len(mask_np_list))
segmentation = 0
for i, m in enumerate(mask_np_list):
color = matplotlib.colors.to_rgb(viridis(i))
color_mat = np.ones_like(m)
color_mat = np.stack([color_mat*color[0], color_mat*color[1],color_mat*color[2] ], axis = 2)
color_mat = color_mat * m[:,:,np.newaxis]
segmentation += color_mat
segmentation = Image.fromarray(np.uint8(segmentation*255))
return segmentation
#@spaces.GPU
def run_segmentation_wrapper(image):
try:
print(image.shape)
image, mask_np_list,mask_label_list = run_segmentation(image)
#image = image.convert('RGB')
segmentation = create_segmentation(mask_np_list)
print("!!", len(mask_np_list))
max_val = len(mask_np_list)-1
sliderup = gr.Slider(value = 0, minimum=0, maximum=max_val, step=1, visible=True)
gr.Info('Segmentation finish. Select mask id and move to the next step.')
return image, segmentation, mask_np_list, mask_label_list, image, sliderup, sliderup , 'Segmentation finish. Select mask id and move to the next step.'
except Exception as e:
print(e)
sliderup = gr.Slider(value = 0, minimum=0, maximum=1, step=1, visible=False)
gr.Warning('Please upload an image before proceeding.')
return None,None,None,None,None, sliderup, sliderup , 'Please upload an image before proceeding.'
def transparent_paste_with_mask(backimg, foreimg, mask_np,transparency = 128):
backimg_solid_np = np.array(backimg)
bimg = backimg.copy()
fimg = foreimg.copy()
fimg.putalpha(transparency)
bimg.paste(fimg, (0,0), fimg)
bimg_np = np.array(bimg)
mask_np = mask_np[:,:,np.newaxis]
new_img_np = bimg_np*mask_np + (1-mask_np)* backimg_solid_np
return Image.fromarray(np.uint8(new_img_np))
def show_segmentation(image, segmentation, flag):
if flag is False:
flag = True
mask_np = np.ones([image.size[0],image.size[1]]).astype(np.uint8)
image_edit = transparent_paste_with_mask(image, segmentation, mask_np ,transparency = TRANSPARENCY)
return image_edit, flag
else:
flag = False
return image,flag
def edit_mask_add(canvas, image, idx, mask_np_list):
mask_sel = mask_np_list[idx]
mask_new = np.uint8(canvas["mask"][:, :, 0]/ 255.)
mask_np_list_updated = []
for midx, m in enumerate(mask_np_list):
if midx == idx:
mask_np_list_updated.append(mask_union(mask_sel, mask_new))
else:
mask_np_list_updated.append(m)
priority_list = [0 for _ in range(len(mask_np_list_updated))]
priority_list[idx] = 1
mask_np_list_updated = process_mask_to_follow_priority(mask_np_list_updated, priority_list)
mask_ones = np.ones([mask_sel.shape[0], mask_sel.shape[1]]).astype(np.uint8)
segmentation = create_segmentation(mask_np_list_updated)
image_edit = transparent_paste_with_mask(image, segmentation, mask_ones ,transparency = TRANSPARENCY)
return mask_np_list_updated, image_edit
def slider_release(index, image, mask_np_list_updated, mask_label_list):
if index > len(mask_np_list_updated)-1:
return image, "out of range", ""
else:
mask_np = mask_np_list_updated[index]
mask_label = mask_label_list[index]
index = mask_label.rfind('-')
mask_label = mask_label[:index]
if mask_label == 'handbag':
mask_prompt = "white handbag"
elif mask_label == 'person':
mask_prompt = "little boy"
elif mask_label == 'wall-other-merged':
mask_prompt = "white wall"
elif mask_label == 'table-merged':
mask_prompt = "table"
else:
mask_prompt = mask_label
segmentation = create_segmentation(mask_np_list_updated)
new_image = transparent_paste_with_mask(image, segmentation, mask_np, transparency = TRANSPARENCY)
gr.Info('Edit '+ mask_label)
return new_image, mask_label, mask_prompt
def image_change():
return gr.Slider(value = 0, minimum=0, maximum=1, step=1, visible=False)
def save_as_orig_mask(mask_np_list_updated, mask_label_list, input_folder="example_tmp"):
print(mask_np_list_updated)
try:
assert np.all(sum(mask_np_list_updated)==1)
except:
print("please check mask")
# plt.imsave( "out_mask.png", mask_list_edit[0])
import pdb; pdb.set_trace()
for midx, (mask, mask_label) in enumerate(zip(mask_np_list_updated, mask_label_list)):
# np.save(os.path.join(input_folder, "maskEDIT{}_{}.npy".format(midx, mask_label)),mask )
np.save(os.path.join(input_folder, "mask{}_{}.npy".format(midx, mask_label)),mask )
savepath = os.path.join(input_folder, "seg_current.png")
visualize_mask_list_clean(mask_np_list_updated, savepath)
def save_as_edit_mask(mask_np_list_updated, mask_label_list, input_folder="example_tmp"):
print(mask_np_list_updated)
try:
assert np.all(sum(mask_np_list_updated)==1)
except:
print("please check mask")
# plt.imsave( "out_mask.png", mask_list_edit[0])
import pdb; pdb.set_trace()
for midx, (mask, mask_label) in enumerate(zip(mask_np_list_updated, mask_label_list)):
np.save(os.path.join(input_folder, "maskEdited{}_{}.npy".format(midx, mask_label)), mask)
savepath = os.path.join(input_folder, "seg_edited.png")
visualize_mask_list_clean(mask_np_list_updated, savepath)
def button_clickable(is_clickable):
return gr.Button(interactive=is_clickable)
def load_pil_img():
from PIL import Image
return Image.open("example_tmp/text/out_text_0.png")
def change_image(img):
return None
import shutil
if os.path.isdir("./example_tmp"):
shutil.rmtree("./example_tmp")
from segment import run_segmentation
with gr.Blocks() as demo:
image = gr.State() # store mask
image_loaded = gr.State()
segmentation = gr.State()
mask_np_list = gr.State([])
mask_label_list = gr.State([])
mask_np_list_updated = gr.State([])
true = gr.State(True)
false = gr.State(False)
block_flag = gr.State(0)
num_tokens_global = gr.State(5)
with gr.Row():
gr.Markdown("""# D-Edit""")
with gr.Row():
with gr.Column():
canvas = gr.Image(value = None, type="numpy", label="Show Mask", show_label=True, height=LENGTH, width=LENGTH, interactive=True)
example_inps = [['./img.png'],['./img2.png'],['./img3.png'],['./img4.png']]
gr.Examples(examples=example_inps, inputs=[canvas],
label='examples', cache_examples='lazy', outputs=[],
fn=change_image)
gr.Markdown(f"Each image must first undergo segmentation. Afterwards, you can modify the \n mask ID and the prompt for image editing, then proceed with the editing process. \n The link of D-edit paper: [https://arxiv.org/abs/2403.04880v2](https://arxiv.org/abs/2403.04880v2), [https://huggingface.co/papers/2403.04880](https://huggingface.co/papers/2403.04880)")
with gr.Column():
result_info0 = gr.Text(label="Response")
segment_button = gr.Button("Step 1. Run segmentation")
flag = gr.State(False)
# mask_np_list_updated.value = copy.deepcopy(mask_np_list.value) #!!
mask_np_list_updated = mask_np_list
gr.Markdown("""<p style="text-align: center; font-size: 20px">Edit Mask (Do not change it during the editing process)</p>""")
slider = gr.Slider(0, 20, step=1, label = 'mask id', visible=False)
label = gr.Text(label='label')
result_info = gr.Text(label="Response")
opt_flag = gr.State(0)
gr.Markdown("""<p style="text-align: center; font-size: 20px">Optimization settings</p>""")
with gr.Accordion(label="Advanced settings", open=False):
num_tokens = gr.Number(value="5", label="num tokens to represent each object", interactive= True)
num_tokens_global = num_tokens
embedding_learning_rate = gr.Textbox(value="0.00025", label="Embedding optimization: Learning rate", interactive= True )
max_emb_train_steps = gr.Number(value="6", label="embedding optimization: Training steps", interactive= True )
diffusion_model_learning_rate = gr.Textbox(value="0.0002", label="UNet Optimization: Learning rate", interactive= True )
max_diffusion_train_steps = gr.Number(value="28", label="UNet Optimization: Learning rate: Training steps", interactive= True )
train_batch_size = gr.Number(value="20", label="Batch size", interactive= True )
gradient_accumulation_steps=gr.Number(value="2", label="Gradient accumulation", interactive= True )
def run_optimization_wrapper (
mask_np_list,
mask_label_list,
image,
opt_flag,
num_tokens,
embedding_learning_rate ,
max_emb_train_steps ,
diffusion_model_learning_rate ,
max_diffusion_train_steps,
train_batch_size,
gradient_accumulation_steps,
):
try:
run_optimization = partial(
run_main,
mask_np_list=mask_np_list,
mask_label_list=mask_label_list,
image_gt=np.array(image),
num_tokens=int(num_tokens),
embedding_learning_rate = float(embedding_learning_rate),
max_emb_train_steps = min(int(max_emb_train_steps),50),
diffusion_model_learning_rate= float(diffusion_model_learning_rate),
max_diffusion_train_steps = min(int(max_diffusion_train_steps),100),
train_batch_size=int(train_batch_size),
gradient_accumulation_steps=int(gradient_accumulation_steps)
)
run_optimization()
gr.Info("Optimization Finished! Move to the next step.")
return "Optimization finished! Move to the next step."#,gr.Button("Step 3. Run Editing",interactive = True)
except Exception as e:
print(e)
gr.Error("e")
return "Error: use a smaller batch size or try latter."#,gr.Button("Step 3. Run Editing",interactive = False)
if 1:
with gr.Row():
with gr.Column():
canvas_text_edit = gr.Image(value = None, type = "pil", label="Editing results", show_label=True,visible = True)
# canvas_text_edit = gr.Gallery(label = "Edited results")
with gr.Column():
gr.Markdown("""<p style="text-align: center; font-size: 20px">Editing setting</p>""")
tgt_prompt = gr.Textbox(value="text prompt", label="Editing: Text prompt", interactive= True )
with gr.Accordion(label="Advanced settings", open=False):
slider2 = gr.Slider(0, 20, step=1, label = 'mask id', visible=False)
guidance_scale = gr.Textbox(value="5", label="Editing: CFG guidance scale", interactive= True )
num_sampling_steps = gr.Number(value="20", label="Editing: Sampling steps", interactive= True )
edge_thickness = gr.Number(value="10", label="Editing: Edge thickness", interactive= True )
strength = gr.Textbox(value="0.5", label="Editing: Mask strength", interactive= True )
add_button = gr.Button("Step 2. Run Editing",interactive = True)
def run_edit_text_wrapper(
mask_np_list,
mask_label_list,
image,
num_tokens,
guidance_scale,
num_sampling_steps ,
strength ,
edge_thickness,
tgt_prompt ,
tgt_index
):
run_edit_text = partial(
run_main,
mask_np_list=mask_np_list,
mask_label_list=mask_label_list,
image_gt=np.array(image),
load_trained=True,
text=True,
num_tokens = int(num_tokens_global.value),
guidance_scale = float(guidance_scale),
num_sampling_steps = int(num_sampling_steps),
strength = float(strength),
edge_thickness = int(edge_thickness),
num_imgs = 1,
tgt_prompt = tgt_prompt,
tgt_index = int(tgt_index)
)
run_edit_text()
gr.Info('Image editing completed.')
return load_pil_img()
def run_total_wrapper(mask_np_list, mask_label_list, image_loaded, opt_flag, num_tokens, embedding_learning_rate, max_emb_train_steps, diffusion_model_learning_rate, max_diffusion_train_steps, train_batch_size, gradient_accumulation_steps, num_tokens_global, guidance_scale, num_sampling_steps, strength, edge_thickness, tgt_prompt, slider2):
result_info = run_optimization_wrapper(mask_np_list, mask_label_list, image_loaded, opt_flag, num_tokens, embedding_learning_rate, max_emb_train_steps, diffusion_model_learning_rate, max_diffusion_train_steps, train_batch_size, gradient_accumulation_steps)
canvas_text_edit = run_edit_text_wrapper(mask_np_list, mask_label_list, image_loaded, num_tokens_global, guidance_scale, num_sampling_steps, strength, edge_thickness, tgt_prompt, slider2)
return result_info, canvas_text_edit
add_button.click(
run_total_wrapper,
inputs=[
mask_np_list,
mask_label_list,
image_loaded,
opt_flag,
num_tokens,
embedding_learning_rate,
max_emb_train_steps,
diffusion_model_learning_rate,
max_diffusion_train_steps,
train_batch_size,
gradient_accumulation_steps,
num_tokens_global,
guidance_scale,
num_sampling_steps,
strength,
edge_thickness,
tgt_prompt,
slider2
],
outputs=[result_info, canvas_text_edit],
)
canvas.upload(image_change, inputs=[], outputs=[slider])
slider.release(slider_release,
inputs = [slider, image_loaded, mask_np_list_updated, mask_label_list],
outputs= [canvas, label,tgt_prompt])
slider.change(
lambda x: x,
inputs=[slider],
outputs=[slider2]
)
segment_button.click(run_segmentation_wrapper,
[canvas] ,
[image_loaded, segmentation, mask_np_list, mask_label_list, canvas, slider, slider2, result_info0] )
demo.queue().launch(debug=True)