Spaces:
Running
on
Zero
Running
on
Zero
first
Browse files- app.py +2 -2
- assets/demo1.gif +0 -0
- assets/demo2.gif +0 -0
- assets/demo3.gif +0 -0
- assets/demo4.gif +0 -0
- assets/mask_def.png +0 -0
- example2/img.png +0 -0
- main.py +1 -1
- pipeline_dedit_sdxl.py +0 -875
app.py
CHANGED
@@ -218,7 +218,7 @@ with gr.Blocks() as demo:
|
|
218 |
with gr.Tab(label="1 Edit mask"):
|
219 |
with gr.Row():
|
220 |
with gr.Column():
|
221 |
-
canvas = gr.Image(value = None, type="numpy",
|
222 |
input_folder = gr.Textbox(value="example1", label="input folder", interactive= True, )
|
223 |
|
224 |
segment_button = gr.Button("1.1 Run segmentation")
|
@@ -283,7 +283,7 @@ with gr.Blocks() as demo:
|
|
283 |
with gr.Tab(label="2 Optimization"):
|
284 |
with gr.Row():
|
285 |
with gr.Column():
|
286 |
-
canvas_opt = gr.Image(value = canvas.value, type="pil",
|
287 |
|
288 |
with gr.Column():
|
289 |
gr.Markdown("""<p style="text-align: center; font-size: 20px">Optimization settings (SD)</p>""")
|
|
|
218 |
with gr.Tab(label="1 Edit mask"):
|
219 |
with gr.Row():
|
220 |
with gr.Column():
|
221 |
+
canvas = gr.Image(value = None, type="numpy", label="Draw Mask", show_label=True, height=LENGTH, width=LENGTH, interactive=True)
|
222 |
input_folder = gr.Textbox(value="example1", label="input folder", interactive= True, )
|
223 |
|
224 |
segment_button = gr.Button("1.1 Run segmentation")
|
|
|
283 |
with gr.Tab(label="2 Optimization"):
|
284 |
with gr.Row():
|
285 |
with gr.Column():
|
286 |
+
canvas_opt = gr.Image(value = canvas.value, type="pil", label="Loaded Image", show_label=True, height=LENGTH, width=LENGTH, interactive=True)
|
287 |
|
288 |
with gr.Column():
|
289 |
gr.Markdown("""<p style="text-align: center; font-size: 20px">Optimization settings (SD)</p>""")
|
assets/demo1.gif
DELETED
Binary file (724 kB)
|
|
assets/demo2.gif
DELETED
Binary file (941 kB)
|
|
assets/demo3.gif
DELETED
Binary file (761 kB)
|
|
assets/demo4.gif
DELETED
Binary file (530 kB)
|
|
assets/mask_def.png
DELETED
Binary file (41.5 kB)
|
|
example2/img.png
DELETED
Binary file (956 kB)
|
|
main.py
CHANGED
@@ -3,7 +3,7 @@ import torch
|
|
3 |
import numpy as np
|
4 |
import argparse
|
5 |
from peft import LoraConfig
|
6 |
-
from pipeline_dedit_sdxl import DEditSDXLPipeline
|
7 |
from pipeline_dedit_sd import DEditSDPipeline
|
8 |
from utils import load_image, load_mask, load_mask_edit
|
9 |
from utils_mask import process_mask_move_torch, process_mask_remove_torch, mask_union_torch, mask_substract_torch, create_outer_edge_mask_torch
|
|
|
3 |
import numpy as np
|
4 |
import argparse
|
5 |
from peft import LoraConfig
|
6 |
+
from old.pipeline_dedit_sdxl import DEditSDXLPipeline
|
7 |
from pipeline_dedit_sd import DEditSDPipeline
|
8 |
from utils import load_image, load_mask, load_mask_edit
|
9 |
from utils_mask import process_mask_move_torch, process_mask_remove_torch, mask_union_torch, mask_substract_torch, create_outer_edge_mask_torch
|
pipeline_dedit_sdxl.py
DELETED
@@ -1,875 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
from utils import import_model_class_from_model_name_or_path
|
3 |
-
from transformers import AutoTokenizer
|
4 |
-
from diffusers import (
|
5 |
-
AutoencoderKL,
|
6 |
-
DDPMScheduler,
|
7 |
-
StableDiffusionXLPipeline,
|
8 |
-
UNet2DConditionModel,
|
9 |
-
)
|
10 |
-
from accelerate import Accelerator
|
11 |
-
from tqdm.auto import tqdm
|
12 |
-
from utils import sdxl_prepare_input_decom, save_images
|
13 |
-
import torch.nn.functional as F
|
14 |
-
import itertools
|
15 |
-
from peft import LoraConfig
|
16 |
-
from controller import GroupedCAController, register_attention_disentangled_control, DummyController
|
17 |
-
from utils import image2latent, latent2image
|
18 |
-
import matplotlib.pyplot as plt
|
19 |
-
from utils_mask import check_mask_overlap_torch
|
20 |
-
|
21 |
-
device = torch.device('cuda:0') if torch.cuda.is_available() else torch.device('cpu')
|
22 |
-
max_length = 40
|
23 |
-
class DEditSDXLPipeline:
|
24 |
-
def __init__(
|
25 |
-
self,
|
26 |
-
mask_list,
|
27 |
-
mask_label_list,
|
28 |
-
mask_list_2 = None,
|
29 |
-
mask_label_list_2 = None,
|
30 |
-
resolution = 1024,
|
31 |
-
num_tokens = 1
|
32 |
-
):
|
33 |
-
super().__init__()
|
34 |
-
model_id = "stabilityai/stable-diffusion-xl-base-1.0"
|
35 |
-
self.model_id = model_id
|
36 |
-
self.tokenizer = AutoTokenizer.from_pretrained(model_id, subfolder="tokenizer", use_fast=False)
|
37 |
-
self.tokenizer_2 = AutoTokenizer.from_pretrained(model_id, subfolder="tokenizer_2", use_fast=False)
|
38 |
-
text_encoder_cls_one = import_model_class_from_model_name_or_path(model_id, subfolder = "text_encoder")
|
39 |
-
text_encoder_cls_two = import_model_class_from_model_name_or_path(model_id, subfolder="text_encoder_2")
|
40 |
-
self.text_encoder = text_encoder_cls_one.from_pretrained(model_id, subfolder="text_encoder" ).to(device)
|
41 |
-
self.text_encoder_2 = text_encoder_cls_two.from_pretrained(model_id, subfolder="text_encoder_2").to(device)
|
42 |
-
self.unet = UNet2DConditionModel.from_pretrained(model_id, subfolder="unet" )
|
43 |
-
self.unet.ca_dim = 2048
|
44 |
-
self.vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix")
|
45 |
-
self.scheduler = DDPMScheduler.from_pretrained(model_id , subfolder="scheduler")
|
46 |
-
|
47 |
-
self.mixed_precision = "fp16"
|
48 |
-
self.resolution = resolution
|
49 |
-
self.num_tokens = num_tokens
|
50 |
-
|
51 |
-
self.mask_list = mask_list
|
52 |
-
self.mask_label_list = mask_label_list
|
53 |
-
notation_token_list = [phrase.split(" ")[-1] for phrase in mask_label_list]
|
54 |
-
placeholder_token_list = ["#"+word+"{}".format(widx) for widx, word in enumerate(notation_token_list)]
|
55 |
-
self.set_string_list, placeholder_token_ids = self.add_tokens(placeholder_token_list)
|
56 |
-
self.min_added_id = min(placeholder_token_ids)
|
57 |
-
self.max_added_id = max(placeholder_token_ids)
|
58 |
-
|
59 |
-
if mask_list_2 is not None:
|
60 |
-
self.mask_list_2 = mask_list_2
|
61 |
-
self.mask_label_list_2 = mask_label_list_2
|
62 |
-
notation_token_list_2 = [phrase.split(" ")[-1] for phrase in mask_label_list_2]
|
63 |
-
|
64 |
-
placeholder_token_list_2 = ["$"+word+"{}".format(widx) for widx, word in enumerate(notation_token_list_2)]
|
65 |
-
self.set_string_list_2, placeholder_token_ids_2 = self.add_tokens(placeholder_token_list_2)
|
66 |
-
self.max_added_id = max(placeholder_token_ids_2)
|
67 |
-
|
68 |
-
def add_tokens_text_encoder_random_init(self, placeholder_token, num_tokens=1):
|
69 |
-
# Add the placeholder token in tokenizer
|
70 |
-
placeholder_tokens = [placeholder_token]
|
71 |
-
# add dummy tokens for multi-vector
|
72 |
-
additional_tokens = []
|
73 |
-
for i in range(1, num_tokens):
|
74 |
-
additional_tokens.append(f"{placeholder_token}_{i}")
|
75 |
-
placeholder_tokens += additional_tokens
|
76 |
-
num_added_tokens = self.tokenizer.add_tokens(placeholder_tokens) # 49408
|
77 |
-
num_added_tokens = self.tokenizer_2.add_tokens(placeholder_tokens) # 49408
|
78 |
-
|
79 |
-
if num_added_tokens != num_tokens:
|
80 |
-
raise ValueError(
|
81 |
-
f"The tokenizer already contains the token {placeholder_token}. Please pass a different"
|
82 |
-
" `placeholder_token` that is not already in the tokenizer."
|
83 |
-
)
|
84 |
-
placeholder_token_ids = self.tokenizer.convert_tokens_to_ids(placeholder_tokens)
|
85 |
-
placeholder_token_ids_2 = self.tokenizer_2.convert_tokens_to_ids(placeholder_tokens)
|
86 |
-
assert placeholder_token_ids == placeholder_token_ids_2, "Two text encoders are expected to have same vocabs"
|
87 |
-
|
88 |
-
self.text_encoder.resize_token_embeddings(len(self.tokenizer))
|
89 |
-
token_embeds = self.text_encoder.get_input_embeddings().weight.data
|
90 |
-
std, mean = torch.std_mean(token_embeds)
|
91 |
-
with torch.no_grad():
|
92 |
-
for token_id in placeholder_token_ids:
|
93 |
-
token_embeds[token_id] = torch.randn_like(token_embeds[token_id])*std + mean
|
94 |
-
|
95 |
-
self.text_encoder_2.resize_token_embeddings(len(self.tokenizer))
|
96 |
-
token_embeds = self.text_encoder_2.get_input_embeddings().weight.data
|
97 |
-
std, mean = torch.std_mean(token_embeds)
|
98 |
-
with torch.no_grad():
|
99 |
-
for token_id in placeholder_token_ids:
|
100 |
-
token_embeds[token_id] = torch.randn_like(token_embeds[token_id])*std + mean
|
101 |
-
|
102 |
-
set_string = " ".join(self.tokenizer.convert_ids_to_tokens(placeholder_token_ids))
|
103 |
-
|
104 |
-
return set_string, placeholder_token_ids
|
105 |
-
|
106 |
-
def add_tokens(self, placeholder_token_list):
|
107 |
-
set_string_list = []
|
108 |
-
placeholder_token_ids_list = []
|
109 |
-
for str_idx in range(len(placeholder_token_list)):
|
110 |
-
placeholder_token = placeholder_token_list[str_idx]
|
111 |
-
set_string, placeholder_token_ids = self.add_tokens_text_encoder_random_init(placeholder_token, num_tokens=self.num_tokens)
|
112 |
-
set_string_list.append(set_string)
|
113 |
-
placeholder_token_ids_list.append(placeholder_token_ids)
|
114 |
-
placeholder_token_ids = list(itertools.chain(*placeholder_token_ids_list))
|
115 |
-
return set_string_list, placeholder_token_ids
|
116 |
-
|
117 |
-
def train_emb(
|
118 |
-
self,
|
119 |
-
image_gt,
|
120 |
-
set_string_list,
|
121 |
-
gradient_accumulation_steps = 5,
|
122 |
-
embedding_learning_rate = 1e-4,
|
123 |
-
max_emb_train_steps = 100,
|
124 |
-
train_batch_size = 1,
|
125 |
-
train_full_lora = False
|
126 |
-
):
|
127 |
-
decom_controller = GroupedCAController(mask_list = self.mask_list)
|
128 |
-
register_attention_disentangled_control(self.unet, decom_controller)
|
129 |
-
|
130 |
-
accelerator = Accelerator(mixed_precision=self.mixed_precision, gradient_accumulation_steps=gradient_accumulation_steps)
|
131 |
-
self.vae.requires_grad_(False)
|
132 |
-
self.unet.requires_grad_(False)
|
133 |
-
|
134 |
-
self.text_encoder.requires_grad_(True)
|
135 |
-
self.text_encoder_2.requires_grad_(True)
|
136 |
-
|
137 |
-
self.text_encoder.text_model.encoder.requires_grad_(False)
|
138 |
-
self.text_encoder.text_model.final_layer_norm.requires_grad_(False)
|
139 |
-
self.text_encoder.text_model.embeddings.position_embedding.requires_grad_(False)
|
140 |
-
|
141 |
-
self.text_encoder_2.text_model.encoder.requires_grad_(False)
|
142 |
-
self.text_encoder_2.text_model.final_layer_norm.requires_grad_(False)
|
143 |
-
self.text_encoder_2.text_model.embeddings.position_embedding.requires_grad_(False)
|
144 |
-
|
145 |
-
weight_dtype = torch.float32
|
146 |
-
if accelerator.mixed_precision == "fp16":
|
147 |
-
weight_dtype = torch.float16
|
148 |
-
elif accelerator.mixed_precision == "bf16":
|
149 |
-
weight_dtype = torch.bfloat16
|
150 |
-
|
151 |
-
self.unet.to(device, dtype=weight_dtype)
|
152 |
-
self.vae.to(device, dtype=weight_dtype)
|
153 |
-
|
154 |
-
trainable_embmat_list_1 = [param for param in self.text_encoder.get_input_embeddings().parameters()]
|
155 |
-
trainable_embmat_list_2 = [param for param in self.text_encoder_2.get_input_embeddings().parameters()]
|
156 |
-
|
157 |
-
optimizer = torch.optim.AdamW(trainable_embmat_list_1 + trainable_embmat_list_2, lr=embedding_learning_rate)
|
158 |
-
|
159 |
-
self.text_encoder, self.text_encoder_2, optimizer = accelerator.prepare(self.text_encoder, self.text_encoder_2, optimizer)
|
160 |
-
|
161 |
-
orig_embeds_params_1 = accelerator.unwrap_model(self.text_encoder) .get_input_embeddings().weight.data.clone()
|
162 |
-
orig_embeds_params_2 = accelerator.unwrap_model(self.text_encoder_2).get_input_embeddings().weight.data.clone()
|
163 |
-
|
164 |
-
self.text_encoder.train()
|
165 |
-
self.text_encoder_2.train()
|
166 |
-
|
167 |
-
effective_emb_train_steps = max_emb_train_steps//gradient_accumulation_steps
|
168 |
-
|
169 |
-
if accelerator.is_main_process:
|
170 |
-
accelerator.init_trackers("DEdit EmbSteps", config={
|
171 |
-
"embedding_learning_rate": embedding_learning_rate,
|
172 |
-
"text_embedding_optimization_steps": effective_emb_train_steps,
|
173 |
-
})
|
174 |
-
global_step = 0
|
175 |
-
noise_scheduler = DDPMScheduler.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0" , subfolder="scheduler")
|
176 |
-
progress_bar = tqdm(range(0, effective_emb_train_steps), initial = global_step, desc="EmbSteps")
|
177 |
-
latents0 = image2latent(image_gt, vae = self.vae, dtype=weight_dtype)
|
178 |
-
latents0 = latents0.repeat(train_batch_size, 1, 1, 1)
|
179 |
-
|
180 |
-
for _ in range(max_emb_train_steps):
|
181 |
-
with accelerator.accumulate(self.text_encoder, self.text_encoder_2):
|
182 |
-
latents = latents0.clone().detach()
|
183 |
-
noise = torch.randn_like(latents)
|
184 |
-
bsz = latents.shape[0]
|
185 |
-
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device)
|
186 |
-
timesteps = timesteps.long()
|
187 |
-
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
|
188 |
-
encoder_hidden_states_list, add_text_embeds, add_time_ids = sdxl_prepare_input_decom(
|
189 |
-
set_string_list,
|
190 |
-
self.tokenizer,
|
191 |
-
self.tokenizer_2,
|
192 |
-
self.text_encoder,
|
193 |
-
self.text_encoder_2,
|
194 |
-
length = max_length,
|
195 |
-
bsz = train_batch_size,
|
196 |
-
weight_dtype = weight_dtype
|
197 |
-
)
|
198 |
-
|
199 |
-
model_pred = self.unet(
|
200 |
-
noisy_latents,
|
201 |
-
timesteps,
|
202 |
-
encoder_hidden_states = encoder_hidden_states_list,
|
203 |
-
cross_attention_kwargs = None,
|
204 |
-
added_cond_kwargs={"text_embeds": add_text_embeds, "time_ids": add_time_ids},
|
205 |
-
return_dict=False
|
206 |
-
)[0]
|
207 |
-
loss = F.mse_loss(model_pred.float(), noise.float(), reduction="mean")
|
208 |
-
accelerator.backward(loss)
|
209 |
-
optimizer.step()
|
210 |
-
optimizer.zero_grad()
|
211 |
-
|
212 |
-
index_no_updates = torch.ones((len(self.tokenizer),), dtype=torch.bool)
|
213 |
-
index_no_updates[self.min_added_id : self.max_added_id + 1] = False
|
214 |
-
with torch.no_grad():
|
215 |
-
accelerator.unwrap_model(self.text_encoder).get_input_embeddings().weight[
|
216 |
-
index_no_updates] = orig_embeds_params_1[index_no_updates]
|
217 |
-
|
218 |
-
index_no_updates = torch.ones((len(self.tokenizer_2),), dtype=torch.bool)
|
219 |
-
index_no_updates[self.min_added_id : self.max_added_id + 1] = False
|
220 |
-
with torch.no_grad():
|
221 |
-
accelerator.unwrap_model(self.text_encoder_2).get_input_embeddings().weight[
|
222 |
-
index_no_updates] = orig_embeds_params_2[index_no_updates]
|
223 |
-
|
224 |
-
logs = {"loss": loss.detach().item(), "lr": embedding_learning_rate}
|
225 |
-
progress_bar.set_postfix(**logs)
|
226 |
-
accelerator.log(logs, step=global_step)
|
227 |
-
if accelerator.sync_gradients:
|
228 |
-
progress_bar.update(1)
|
229 |
-
global_step += 1
|
230 |
-
|
231 |
-
if global_step >= max_emb_train_steps:
|
232 |
-
break
|
233 |
-
accelerator.wait_for_everyone()
|
234 |
-
accelerator.end_training()
|
235 |
-
self.text_encoder = accelerator.unwrap_model(self.text_encoder).to(dtype = weight_dtype)
|
236 |
-
self.text_encoder_2 = accelerator.unwrap_model(self.text_encoder_2).to(dtype = weight_dtype)
|
237 |
-
|
238 |
-
def train_model(
|
239 |
-
self,
|
240 |
-
image_gt,
|
241 |
-
set_string_list,
|
242 |
-
gradient_accumulation_steps = 5,
|
243 |
-
max_diffusion_train_steps = 100,
|
244 |
-
diffusion_model_learning_rate = 1e-5,
|
245 |
-
train_batch_size = 1,
|
246 |
-
train_full_lora = False,
|
247 |
-
lora_rank = 4,
|
248 |
-
lora_alpha = 4
|
249 |
-
):
|
250 |
-
self.unet = UNet2DConditionModel.from_pretrained(self.model_id, subfolder="unet").to(device)
|
251 |
-
self.unet.ca_dim = 2048
|
252 |
-
decom_controller = GroupedCAController(mask_list = self.mask_list)
|
253 |
-
register_attention_disentangled_control(self.unet, decom_controller)
|
254 |
-
|
255 |
-
mixed_precision = "fp16"
|
256 |
-
accelerator = Accelerator(gradient_accumulation_steps = gradient_accumulation_steps, mixed_precision = mixed_precision)
|
257 |
-
|
258 |
-
weight_dtype = torch.float32
|
259 |
-
if accelerator.mixed_precision == "fp16":
|
260 |
-
weight_dtype = torch.float16
|
261 |
-
elif accelerator.mixed_precision == "bf16":
|
262 |
-
weight_dtype = torch.bfloat16
|
263 |
-
|
264 |
-
self.vae.requires_grad_(False)
|
265 |
-
self.vae.to(device, dtype=weight_dtype)
|
266 |
-
|
267 |
-
self.unet.requires_grad_(False)
|
268 |
-
self.unet.train()
|
269 |
-
|
270 |
-
self.text_encoder.requires_grad_(False)
|
271 |
-
self.text_encoder_2.requires_grad_(False)
|
272 |
-
|
273 |
-
if not train_full_lora:
|
274 |
-
trainable_params_list = []
|
275 |
-
for _, module in self.unet.named_modules():
|
276 |
-
module_name = type(module).__name__
|
277 |
-
if module_name == "Attention":
|
278 |
-
if module.to_k.in_features == 2048: # this is cross attention:
|
279 |
-
module.to_k.weight.requires_grad = True
|
280 |
-
trainable_params_list.append(module.to_k.weight)
|
281 |
-
if module.to_k.bias is not None:
|
282 |
-
module.to_k.bias.requires_grad = True
|
283 |
-
trainable_params_list.append(module.to_k.bias)
|
284 |
-
module.to_v.weight.requires_grad = True
|
285 |
-
trainable_params_list.append(module.to_v.weight)
|
286 |
-
if module.to_v.bias is not None:
|
287 |
-
module.to_v.bias.requires_grad = True
|
288 |
-
trainable_params_list.append(module.to_v.bias)
|
289 |
-
module.to_q.weight.requires_grad = True
|
290 |
-
trainable_params_list.append(module.to_q.weight)
|
291 |
-
if module.to_q.bias is not None:
|
292 |
-
module.to_q.bias.requires_grad = True
|
293 |
-
trainable_params_list.append(module.to_q.bias)
|
294 |
-
else:
|
295 |
-
unet_lora_config = LoraConfig(
|
296 |
-
r=lora_rank,
|
297 |
-
lora_alpha=lora_alpha,
|
298 |
-
init_lora_weights="gaussian",
|
299 |
-
target_modules=["to_k", "to_q", "to_v", "to_out.0"],
|
300 |
-
)
|
301 |
-
self.unet.add_adapter(unet_lora_config)
|
302 |
-
print("training full parameters using lora!")
|
303 |
-
trainable_params_list = list(filter(lambda p: p.requires_grad, self.unet.parameters()))
|
304 |
-
|
305 |
-
self.text_encoder.to(device, dtype=weight_dtype)
|
306 |
-
self.text_encoder_2.to(device, dtype=weight_dtype)
|
307 |
-
optimizer = torch.optim.AdamW(trainable_params_list, lr=diffusion_model_learning_rate)
|
308 |
-
self.unet, optimizer = accelerator.prepare(self.unet, optimizer)
|
309 |
-
psum2 = sum(p.numel() for p in trainable_params_list)
|
310 |
-
|
311 |
-
effective_diffusion_train_steps = max_diffusion_train_steps // gradient_accumulation_steps
|
312 |
-
if accelerator.is_main_process:
|
313 |
-
accelerator.init_trackers("textual_inversion", config={
|
314 |
-
"diffusion_model_learning_rate": diffusion_model_learning_rate,
|
315 |
-
"diffusion_model_optimization_steps": effective_diffusion_train_steps,
|
316 |
-
})
|
317 |
-
|
318 |
-
global_step = 0
|
319 |
-
progress_bar = tqdm( range(0, effective_diffusion_train_steps),initial=global_step, desc="ModelSteps")
|
320 |
-
|
321 |
-
noise_scheduler = DDPMScheduler.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0" , subfolder="scheduler")
|
322 |
-
|
323 |
-
latents0 = image2latent(image_gt, vae = self.vae, dtype=weight_dtype)
|
324 |
-
latents0 = latents0.repeat(train_batch_size, 1, 1, 1)
|
325 |
-
|
326 |
-
with torch.no_grad():
|
327 |
-
encoder_hidden_states_list, add_text_embeds, add_time_ids = sdxl_prepare_input_decom(
|
328 |
-
set_string_list,
|
329 |
-
self.tokenizer,
|
330 |
-
self.tokenizer_2,
|
331 |
-
self.text_encoder,
|
332 |
-
self.text_encoder_2,
|
333 |
-
length = max_length,
|
334 |
-
bsz = train_batch_size,
|
335 |
-
weight_dtype = weight_dtype
|
336 |
-
)
|
337 |
-
|
338 |
-
for _ in range(max_diffusion_train_steps):
|
339 |
-
with accelerator.accumulate(self.unet):
|
340 |
-
latents = latents0.clone().detach()
|
341 |
-
noise = torch.randn_like(latents)
|
342 |
-
bsz = latents.shape[0]
|
343 |
-
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device)
|
344 |
-
timesteps = timesteps.long()
|
345 |
-
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
|
346 |
-
model_pred = self.unet(
|
347 |
-
noisy_latents,
|
348 |
-
timesteps,
|
349 |
-
encoder_hidden_states=encoder_hidden_states_list,
|
350 |
-
cross_attention_kwargs=None, return_dict=False,
|
351 |
-
added_cond_kwargs={"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
352 |
-
)[0]
|
353 |
-
loss = F.mse_loss(model_pred.float(), noise.float(), reduction="mean")
|
354 |
-
accelerator.backward(loss)
|
355 |
-
optimizer.step()
|
356 |
-
optimizer.zero_grad()
|
357 |
-
|
358 |
-
logs = {"loss": loss.detach().item(), "lr": diffusion_model_learning_rate}
|
359 |
-
progress_bar.set_postfix(**logs)
|
360 |
-
accelerator.log(logs, step=global_step)
|
361 |
-
if accelerator.sync_gradients:
|
362 |
-
progress_bar.update(1)
|
363 |
-
global_step += 1
|
364 |
-
if global_step >=max_diffusion_train_steps:
|
365 |
-
break
|
366 |
-
accelerator.wait_for_everyone()
|
367 |
-
accelerator.end_training()
|
368 |
-
self.unet = accelerator.unwrap_model(self.unet).to(dtype = weight_dtype)
|
369 |
-
|
370 |
-
def train_emb_2imgs(
|
371 |
-
self,
|
372 |
-
image_gt_1,
|
373 |
-
image_gt_2,
|
374 |
-
set_string_list_1,
|
375 |
-
set_string_list_2,
|
376 |
-
gradient_accumulation_steps = 5,
|
377 |
-
embedding_learning_rate = 1e-4,
|
378 |
-
max_emb_train_steps = 100,
|
379 |
-
train_batch_size = 1,
|
380 |
-
train_full_lora = False
|
381 |
-
):
|
382 |
-
decom_controller_1 = GroupedCAController(mask_list = self.mask_list)
|
383 |
-
decom_controller_2 = GroupedCAController(mask_list = self.mask_list_2)
|
384 |
-
accelerator = Accelerator(mixed_precision=self.mixed_precision, gradient_accumulation_steps=gradient_accumulation_steps)
|
385 |
-
self.vae.requires_grad_(False)
|
386 |
-
self.unet.requires_grad_(False)
|
387 |
-
|
388 |
-
self.text_encoder.requires_grad_(True)
|
389 |
-
self.text_encoder_2.requires_grad_(True)
|
390 |
-
|
391 |
-
self.text_encoder.text_model.encoder.requires_grad_(False)
|
392 |
-
self.text_encoder.text_model.final_layer_norm.requires_grad_(False)
|
393 |
-
self.text_encoder.text_model.embeddings.position_embedding.requires_grad_(False)
|
394 |
-
|
395 |
-
self.text_encoder_2.text_model.encoder.requires_grad_(False)
|
396 |
-
self.text_encoder_2.text_model.final_layer_norm.requires_grad_(False)
|
397 |
-
self.text_encoder_2.text_model.embeddings.position_embedding.requires_grad_(False)
|
398 |
-
|
399 |
-
weight_dtype = torch.float32
|
400 |
-
if accelerator.mixed_precision == "fp16":
|
401 |
-
weight_dtype = torch.float16
|
402 |
-
elif accelerator.mixed_precision == "bf16":
|
403 |
-
weight_dtype = torch.bfloat16
|
404 |
-
|
405 |
-
self.unet.to(device, dtype=weight_dtype)
|
406 |
-
self.vae.to(device, dtype=weight_dtype)
|
407 |
-
|
408 |
-
|
409 |
-
trainable_embmat_list_1 = [param for param in self.text_encoder.get_input_embeddings().parameters()]
|
410 |
-
trainable_embmat_list_2 = [param for param in self.text_encoder_2.get_input_embeddings().parameters()]
|
411 |
-
|
412 |
-
optimizer = torch.optim.AdamW(trainable_embmat_list_1 + trainable_embmat_list_2, lr=embedding_learning_rate)
|
413 |
-
self.text_encoder, self.text_encoder_2, optimizer= accelerator.prepare(self.text_encoder, self.text_encoder_2, optimizer) ###
|
414 |
-
orig_embeds_params_1 = accelerator.unwrap_model(self.text_encoder) .get_input_embeddings().weight.data.clone()
|
415 |
-
orig_embeds_params_2 = accelerator.unwrap_model(self.text_encoder_2).get_input_embeddings().weight.data.clone()
|
416 |
-
|
417 |
-
self.text_encoder.train()
|
418 |
-
self.text_encoder_2.train()
|
419 |
-
|
420 |
-
effective_emb_train_steps = max_emb_train_steps//gradient_accumulation_steps
|
421 |
-
|
422 |
-
if accelerator.is_main_process:
|
423 |
-
accelerator.init_trackers("EmbFt", config={
|
424 |
-
"embedding_learning_rate": embedding_learning_rate,
|
425 |
-
"text_embedding_optimization_steps": effective_emb_train_steps,
|
426 |
-
})
|
427 |
-
|
428 |
-
global_step = 0
|
429 |
-
|
430 |
-
noise_scheduler = DDPMScheduler.from_pretrained(self.model_id , subfolder="scheduler")
|
431 |
-
progress_bar = tqdm(range(0, effective_emb_train_steps),initial=global_step,desc="EmbSteps")
|
432 |
-
latents0_1 = image2latent(image_gt_1, vae = self.vae, dtype=weight_dtype)
|
433 |
-
latents0_1 = latents0_1.repeat(train_batch_size,1,1,1)
|
434 |
-
|
435 |
-
latents0_2 = image2latent(image_gt_2, vae = self.vae, dtype=weight_dtype)
|
436 |
-
latents0_2 = latents0_2.repeat(train_batch_size,1,1,1)
|
437 |
-
|
438 |
-
for step in range(max_emb_train_steps):
|
439 |
-
with accelerator.accumulate(self.text_encoder, self.text_encoder_2):
|
440 |
-
latents_1 = latents0_1.clone().detach()
|
441 |
-
noise_1 = torch.randn_like(latents_1)
|
442 |
-
|
443 |
-
latents_2 = latents0_2.clone().detach()
|
444 |
-
noise_2 = torch.randn_like(latents_2)
|
445 |
-
|
446 |
-
bsz = latents_1.shape[0]
|
447 |
-
|
448 |
-
timesteps_1 = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents_1.device)
|
449 |
-
timesteps_1 = timesteps_1.long()
|
450 |
-
noisy_latents_1 = noise_scheduler.add_noise(latents_1, noise_1, timesteps_1)
|
451 |
-
|
452 |
-
timesteps_2 = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents_2.device)
|
453 |
-
timesteps_2 = timesteps_2.long()
|
454 |
-
noisy_latents_2 = noise_scheduler.add_noise(latents_2, noise_2, timesteps_2)
|
455 |
-
|
456 |
-
register_attention_disentangled_control(self.unet, decom_controller_1)
|
457 |
-
encoder_hidden_states_list_1, add_text_embeds_1, add_time_ids_1 = sdxl_prepare_input_decom(
|
458 |
-
set_string_list_1,
|
459 |
-
self.tokenizer,
|
460 |
-
self.tokenizer_2,
|
461 |
-
self.text_encoder,
|
462 |
-
self.text_encoder_2,
|
463 |
-
length = max_length,
|
464 |
-
bsz = train_batch_size,
|
465 |
-
weight_dtype = weight_dtype
|
466 |
-
)
|
467 |
-
|
468 |
-
model_pred_1 = self.unet(
|
469 |
-
noisy_latents_1,
|
470 |
-
timesteps_1,
|
471 |
-
encoder_hidden_states=encoder_hidden_states_list_1,
|
472 |
-
cross_attention_kwargs=None,
|
473 |
-
added_cond_kwargs={"text_embeds": add_text_embeds_1, "time_ids": add_time_ids_1},
|
474 |
-
return_dict=False
|
475 |
-
)[0]
|
476 |
-
|
477 |
-
register_attention_disentangled_control(self.unet, decom_controller_2)
|
478 |
-
# import pdb; pdb.set_trace()
|
479 |
-
encoder_hidden_states_list_2, add_text_embeds_2, add_time_ids_2 = sdxl_prepare_input_decom(
|
480 |
-
set_string_list_2,
|
481 |
-
self.tokenizer,
|
482 |
-
self.tokenizer_2,
|
483 |
-
self.text_encoder,
|
484 |
-
self.text_encoder_2,
|
485 |
-
length = max_length,
|
486 |
-
bsz = train_batch_size,
|
487 |
-
weight_dtype = weight_dtype
|
488 |
-
)
|
489 |
-
|
490 |
-
model_pred_2 = self.unet(
|
491 |
-
noisy_latents_2,
|
492 |
-
timesteps_2,
|
493 |
-
encoder_hidden_states = encoder_hidden_states_list_2,
|
494 |
-
cross_attention_kwargs=None,
|
495 |
-
added_cond_kwargs={"text_embeds": add_text_embeds_2, "time_ids": add_time_ids_2},
|
496 |
-
return_dict=False
|
497 |
-
)[0]
|
498 |
-
|
499 |
-
loss_1 = F.mse_loss(model_pred_1.float(), noise_1.float(), reduction="mean") /2
|
500 |
-
loss_2 = F.mse_loss(model_pred_2.float(), noise_2.float(), reduction="mean") /2
|
501 |
-
loss = loss_1 + loss_2
|
502 |
-
accelerator.backward(loss)
|
503 |
-
optimizer.step()
|
504 |
-
optimizer.zero_grad()
|
505 |
-
|
506 |
-
index_no_updates = torch.ones((len(self.tokenizer),), dtype=torch.bool)
|
507 |
-
index_no_updates[self.min_added_id : self.max_added_id + 1] = False
|
508 |
-
with torch.no_grad():
|
509 |
-
accelerator.unwrap_model(self.text_encoder).get_input_embeddings().weight[
|
510 |
-
index_no_updates] = orig_embeds_params_1[index_no_updates]
|
511 |
-
index_no_updates = torch.ones((len(self.tokenizer_2),), dtype=torch.bool)
|
512 |
-
index_no_updates[self.min_added_id : self.max_added_id + 1] = False
|
513 |
-
with torch.no_grad():
|
514 |
-
accelerator.unwrap_model(self.text_encoder_2).get_input_embeddings().weight[
|
515 |
-
index_no_updates] = orig_embeds_params_2[index_no_updates]
|
516 |
-
|
517 |
-
logs = {"loss": loss.detach().item(), "lr": embedding_learning_rate}
|
518 |
-
progress_bar.set_postfix(**logs)
|
519 |
-
accelerator.log(logs, step=global_step)
|
520 |
-
if accelerator.sync_gradients:
|
521 |
-
progress_bar.update(1)
|
522 |
-
global_step += 1
|
523 |
-
|
524 |
-
if global_step >= max_emb_train_steps:
|
525 |
-
break
|
526 |
-
accelerator.wait_for_everyone()
|
527 |
-
accelerator.end_training()
|
528 |
-
self.text_encoder = accelerator.unwrap_model(self.text_encoder) .to(dtype = weight_dtype)
|
529 |
-
self.text_encoder_2 = accelerator.unwrap_model(self.text_encoder_2).to(dtype = weight_dtype)
|
530 |
-
|
531 |
-
def train_model_2imgs(
|
532 |
-
self,
|
533 |
-
image_gt_1,
|
534 |
-
image_gt_2,
|
535 |
-
set_string_list_1,
|
536 |
-
set_string_list_2,
|
537 |
-
gradient_accumulation_steps = 5,
|
538 |
-
max_diffusion_train_steps = 100,
|
539 |
-
diffusion_model_learning_rate = 1e-5,
|
540 |
-
train_batch_size = 1,
|
541 |
-
train_full_lora = False,
|
542 |
-
lora_rank = 4,
|
543 |
-
lora_alpha = 4
|
544 |
-
):
|
545 |
-
self.unet = UNet2DConditionModel.from_pretrained(self.model_id, subfolder="unet").to(device)
|
546 |
-
self.unet.ca_dim = 2048
|
547 |
-
decom_controller_1 = GroupedCAController(mask_list = self.mask_list)
|
548 |
-
decom_controller_2 = GroupedCAController(mask_list = self.mask_list_2)
|
549 |
-
|
550 |
-
mixed_precision = "fp16"
|
551 |
-
accelerator = Accelerator(gradient_accumulation_steps=gradient_accumulation_steps,mixed_precision=mixed_precision)
|
552 |
-
|
553 |
-
weight_dtype = torch.float32
|
554 |
-
if accelerator.mixed_precision == "fp16":
|
555 |
-
weight_dtype = torch.float16
|
556 |
-
elif accelerator.mixed_precision == "bf16":
|
557 |
-
weight_dtype = torch.bfloat16
|
558 |
-
|
559 |
-
|
560 |
-
self.vae.requires_grad_(False)
|
561 |
-
self.vae.to(device, dtype=weight_dtype)
|
562 |
-
self.unet.requires_grad_(False)
|
563 |
-
self.unet.train()
|
564 |
-
|
565 |
-
self.text_encoder.requires_grad_(False)
|
566 |
-
self.text_encoder_2.requires_grad_(False)
|
567 |
-
if not train_full_lora:
|
568 |
-
trainable_params_list = []
|
569 |
-
for name, module in self.unet.named_modules():
|
570 |
-
module_name = type(module).__name__
|
571 |
-
if module_name == "Attention":
|
572 |
-
if module.to_k.in_features == 2048: # this is cross attention:
|
573 |
-
module.to_k.weight.requires_grad = True
|
574 |
-
trainable_params_list.append(module.to_k.weight)
|
575 |
-
if module.to_k.bias is not None:
|
576 |
-
module.to_k.bias.requires_grad = True
|
577 |
-
trainable_params_list.append(module.to_k.bias)
|
578 |
-
|
579 |
-
module.to_v.weight.requires_grad = True
|
580 |
-
trainable_params_list.append(module.to_v.weight)
|
581 |
-
if module.to_v.bias is not None:
|
582 |
-
module.to_v.bias.requires_grad = True
|
583 |
-
trainable_params_list.append(module.to_v.bias)
|
584 |
-
module.to_q.weight.requires_grad = True
|
585 |
-
trainable_params_list.append(module.to_q.weight)
|
586 |
-
if module.to_q.bias is not None:
|
587 |
-
module.to_q.bias.requires_grad = True
|
588 |
-
trainable_params_list.append(module.to_q.bias)
|
589 |
-
else:
|
590 |
-
unet_lora_config = LoraConfig(
|
591 |
-
r = lora_rank,
|
592 |
-
lora_alpha = lora_alpha,
|
593 |
-
init_lora_weights="gaussian",
|
594 |
-
target_modules=["to_k", "to_q", "to_v", "to_out.0"],
|
595 |
-
)
|
596 |
-
self.unet.add_adapter(unet_lora_config)
|
597 |
-
print("training full parameters using lora!")
|
598 |
-
trainable_params_list = list(filter(lambda p: p.requires_grad, self.unet.parameters()))
|
599 |
-
|
600 |
-
self.text_encoder.to(device, dtype=weight_dtype)
|
601 |
-
self.text_encoder_2.to(device, dtype=weight_dtype)
|
602 |
-
optimizer = torch.optim.AdamW(trainable_params_list, lr=diffusion_model_learning_rate)
|
603 |
-
self.unet, optimizer = accelerator.prepare(self.unet, optimizer)
|
604 |
-
psum2 = sum(p.numel() for p in trainable_params_list)
|
605 |
-
|
606 |
-
effective_diffusion_train_steps = max_diffusion_train_steps // gradient_accumulation_steps
|
607 |
-
if accelerator.is_main_process:
|
608 |
-
accelerator.init_trackers("ModelFt", config={
|
609 |
-
"diffusion_model_learning_rate": diffusion_model_learning_rate,
|
610 |
-
"diffusion_model_optimization_steps": effective_diffusion_train_steps,
|
611 |
-
})
|
612 |
-
|
613 |
-
global_step = 0
|
614 |
-
progress_bar = tqdm(range(0, effective_diffusion_train_steps),initial=global_step, desc="ModelSteps")
|
615 |
-
noise_scheduler = DDPMScheduler.from_pretrained(self.model_id, subfolder="scheduler")
|
616 |
-
|
617 |
-
latents0_1 = image2latent(image_gt_1, vae = self.vae, dtype=weight_dtype)
|
618 |
-
latents0_1 = latents0_1.repeat(train_batch_size, 1, 1, 1)
|
619 |
-
|
620 |
-
latents0_2 = image2latent(image_gt_2, vae = self.vae, dtype=weight_dtype)
|
621 |
-
latents0_2 = latents0_2.repeat(train_batch_size,1, 1, 1)
|
622 |
-
|
623 |
-
with torch.no_grad():
|
624 |
-
encoder_hidden_states_list_1, add_text_embeds_1, add_time_ids_1 = sdxl_prepare_input_decom(
|
625 |
-
set_string_list_1,
|
626 |
-
self.tokenizer,
|
627 |
-
self.tokenizer_2,
|
628 |
-
self.text_encoder,
|
629 |
-
self.text_encoder_2,
|
630 |
-
length = max_length,
|
631 |
-
bsz = train_batch_size,
|
632 |
-
weight_dtype = weight_dtype
|
633 |
-
)
|
634 |
-
encoder_hidden_states_list_2, add_text_embeds_2, add_time_ids_2 = sdxl_prepare_input_decom(
|
635 |
-
set_string_list_2,
|
636 |
-
self.tokenizer,
|
637 |
-
self.tokenizer_2,
|
638 |
-
self.text_encoder,
|
639 |
-
self.text_encoder_2,
|
640 |
-
length = max_length,
|
641 |
-
bsz = train_batch_size,
|
642 |
-
weight_dtype = weight_dtype
|
643 |
-
)
|
644 |
-
|
645 |
-
for _ in range(max_diffusion_train_steps):
|
646 |
-
with accelerator.accumulate(self.unet):
|
647 |
-
latents_1 = latents0_1.clone().detach()
|
648 |
-
noise_1 = torch.randn_like(latents_1)
|
649 |
-
bsz = latents_1.shape[0]
|
650 |
-
timesteps_1 = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents_1.device)
|
651 |
-
timesteps_1 = timesteps_1.long()
|
652 |
-
noisy_latents_1 = noise_scheduler.add_noise(latents_1, noise_1, timesteps_1)
|
653 |
-
|
654 |
-
latents_2 = latents0_2.clone().detach()
|
655 |
-
noise_2 = torch.randn_like(latents_2)
|
656 |
-
bsz = latents_2.shape[0]
|
657 |
-
timesteps_2 = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents_2.device)
|
658 |
-
timesteps_2 = timesteps_2.long()
|
659 |
-
noisy_latents_2 = noise_scheduler.add_noise(latents_2, noise_2, timesteps_2)
|
660 |
-
|
661 |
-
register_attention_disentangled_control(self.unet, decom_controller_1)
|
662 |
-
model_pred_1 = self.unet(
|
663 |
-
noisy_latents_1,
|
664 |
-
timesteps_1,
|
665 |
-
encoder_hidden_states = encoder_hidden_states_list_1,
|
666 |
-
cross_attention_kwargs = None,
|
667 |
-
return_dict = False,
|
668 |
-
added_cond_kwargs = {"text_embeds": add_text_embeds_1, "time_ids": add_time_ids_1}
|
669 |
-
)[0]
|
670 |
-
|
671 |
-
register_attention_disentangled_control(self.unet, decom_controller_2)
|
672 |
-
model_pred_2 = self.unet(
|
673 |
-
noisy_latents_2,
|
674 |
-
timesteps_2,
|
675 |
-
encoder_hidden_states = encoder_hidden_states_list_2,
|
676 |
-
cross_attention_kwargs = None,
|
677 |
-
return_dict=False,
|
678 |
-
added_cond_kwargs={"text_embeds": add_text_embeds_2, "time_ids": add_time_ids_2}
|
679 |
-
)[0]
|
680 |
-
|
681 |
-
loss_1 = F.mse_loss(model_pred_1.float(), noise_1.float(), reduction="mean")
|
682 |
-
loss_2 = F.mse_loss(model_pred_2.float(), noise_2.float(), reduction="mean")
|
683 |
-
loss = loss_1 + loss_2
|
684 |
-
accelerator.backward(loss)
|
685 |
-
optimizer.step()
|
686 |
-
optimizer.zero_grad()
|
687 |
-
|
688 |
-
|
689 |
-
logs = {"loss": loss.detach().item(), "lr": diffusion_model_learning_rate}
|
690 |
-
progress_bar.set_postfix(**logs)
|
691 |
-
accelerator.log(logs, step=global_step)
|
692 |
-
if accelerator.sync_gradients:
|
693 |
-
progress_bar.update(1)
|
694 |
-
global_step += 1
|
695 |
-
|
696 |
-
if global_step >=max_diffusion_train_steps:
|
697 |
-
break
|
698 |
-
accelerator.wait_for_everyone()
|
699 |
-
accelerator.end_training()
|
700 |
-
self.unet = accelerator.unwrap_model(self.unet).to(dtype = weight_dtype)
|
701 |
-
|
702 |
-
@torch.no_grad()
|
703 |
-
def backward_zT_to_z0_euler_decom(
|
704 |
-
self,
|
705 |
-
zT,
|
706 |
-
cond_emb_list,
|
707 |
-
cond_add_text_embeds,
|
708 |
-
add_time_ids,
|
709 |
-
uncond_emb=None,
|
710 |
-
guidance_scale = 1,
|
711 |
-
num_sampling_steps = 20,
|
712 |
-
cond_controller = None,
|
713 |
-
uncond_controller = None,
|
714 |
-
mask_hard = None,
|
715 |
-
mask_soft = None,
|
716 |
-
orig_image = None,
|
717 |
-
return_intermediate = False,
|
718 |
-
strength = 1
|
719 |
-
):
|
720 |
-
latent_cur = zT
|
721 |
-
if uncond_emb is None:
|
722 |
-
uncond_emb = torch.zeros(zT.shape[0], 77, 2048).to(dtype = zT.dtype, device = zT.device)
|
723 |
-
uncond_add_text_embeds = torch.zeros(1, 1280).to(dtype = zT.dtype, device = zT.device)
|
724 |
-
if mask_soft is not None:
|
725 |
-
init_latents_orig = image2latent(orig_image, self.vae, dtype=self.vae.dtype)
|
726 |
-
length = init_latents_orig.shape[-1]
|
727 |
-
noise = torch.randn_like(init_latents_orig)
|
728 |
-
mask_soft = torch.nn.functional.interpolate(mask_soft.float().unsqueeze(0).unsqueeze(0), (length, length)).to(self.vae.dtype) ###
|
729 |
-
if mask_hard is not None:
|
730 |
-
init_latents_orig = image2latent(orig_image, self.vae, dtype=self.vae.dtype)
|
731 |
-
length = init_latents_orig.shape[-1]
|
732 |
-
noise = torch.randn_like(init_latents_orig)
|
733 |
-
mask_hard = torch.nn.functional.interpolate(mask_hard.float().unsqueeze(0).unsqueeze(0), (length, length)).to(self.vae.dtype) ###
|
734 |
-
|
735 |
-
intermediate_list = [latent_cur.detach()]
|
736 |
-
for i in tqdm(range(num_sampling_steps)):
|
737 |
-
t = self.scheduler.timesteps[i]
|
738 |
-
latent_input = self.scheduler.scale_model_input(latent_cur, t)
|
739 |
-
|
740 |
-
register_attention_disentangled_control(self.unet, uncond_controller)
|
741 |
-
noise_pred_uncond = self.unet(latent_input, t,
|
742 |
-
encoder_hidden_states=uncond_emb,
|
743 |
-
added_cond_kwargs={"text_embeds": uncond_add_text_embeds, "time_ids": add_time_ids},
|
744 |
-
return_dict=False,)[0]
|
745 |
-
|
746 |
-
register_attention_disentangled_control(self.unet, cond_controller)
|
747 |
-
noise_pred_cond = self.unet(latent_input, t,
|
748 |
-
encoder_hidden_states=cond_emb_list,
|
749 |
-
added_cond_kwargs={"text_embeds": cond_add_text_embeds, "time_ids": add_time_ids},
|
750 |
-
return_dict=False,)[0]
|
751 |
-
|
752 |
-
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond)
|
753 |
-
latent_cur = self.scheduler.step(noise_pred, t, latent_cur, generator = None, return_dict=False)[0]
|
754 |
-
if return_intermediate is True:
|
755 |
-
intermediate_list.append(latent_cur)
|
756 |
-
if mask_hard is not None and mask_soft is not None and i <= strength *num_sampling_steps:
|
757 |
-
init_latents_proper = self.scheduler.add_noise(init_latents_orig, noise, torch.tensor([t]))
|
758 |
-
mask = mask_soft.to(latent_cur.device, latent_cur.dtype) + mask_hard.to(latent_cur.device, latent_cur.dtype)
|
759 |
-
latent_cur = (init_latents_proper * mask) + (latent_cur * (1 - mask))
|
760 |
-
|
761 |
-
elif mask_hard is not None and mask_soft is not None and i > strength *num_sampling_steps:
|
762 |
-
init_latents_proper = self.scheduler.add_noise(init_latents_orig, noise, torch.tensor([t]))
|
763 |
-
mask = mask_hard.to(latent_cur.device, latent_cur.dtype)
|
764 |
-
latent_cur = (init_latents_proper * mask) + (latent_cur * (1 - mask))
|
765 |
-
|
766 |
-
elif mask_hard is None and mask_soft is not None and i <= strength *num_sampling_steps:
|
767 |
-
init_latents_proper = self.scheduler.add_noise(init_latents_orig, noise, torch.tensor([t]))
|
768 |
-
mask = mask_soft.to(latent_cur.device, latent_cur.dtype)
|
769 |
-
latent_cur = (init_latents_proper * mask) + (latent_cur * (1 - mask))
|
770 |
-
|
771 |
-
elif mask_hard is None and mask_soft is not None and i > strength *num_sampling_steps:
|
772 |
-
pass
|
773 |
-
|
774 |
-
elif mask_hard is not None and mask_soft is None:
|
775 |
-
init_latents_proper = self.scheduler.add_noise(init_latents_orig, noise, torch.tensor([t]))
|
776 |
-
mask = mask_hard.to(latent_cur.dtype)
|
777 |
-
latent_cur = (init_latents_proper * mask) + (latent_cur * (1 - mask))
|
778 |
-
|
779 |
-
else: # hard and soft are both none
|
780 |
-
pass
|
781 |
-
|
782 |
-
if return_intermediate is True:
|
783 |
-
return latent_cur, intermediate_list
|
784 |
-
else:
|
785 |
-
return latent_cur
|
786 |
-
|
787 |
-
@torch.no_grad()
|
788 |
-
def sampling(
|
789 |
-
self,
|
790 |
-
set_string_list,
|
791 |
-
cond_controller = None,
|
792 |
-
uncond_controller = None,
|
793 |
-
guidance_scale = 7,
|
794 |
-
num_sampling_steps = 20,
|
795 |
-
mask_hard = None,
|
796 |
-
mask_soft = None,
|
797 |
-
orig_image = None,
|
798 |
-
strength = 1.,
|
799 |
-
num_imgs = 1,
|
800 |
-
normal_token_id_list = [],
|
801 |
-
seed = 1
|
802 |
-
):
|
803 |
-
weight_dtype = torch.float16
|
804 |
-
self.scheduler.set_timesteps(num_sampling_steps)
|
805 |
-
self.unet.to(device, dtype=weight_dtype)
|
806 |
-
self.vae.to(device, dtype=weight_dtype)
|
807 |
-
self.text_encoder.to(device, dtype=weight_dtype)
|
808 |
-
self.text_encoder_2.to(device, dtype=weight_dtype)
|
809 |
-
torch.manual_seed(seed)
|
810 |
-
torch.cuda.manual_seed(seed)
|
811 |
-
|
812 |
-
vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
813 |
-
zT = torch.randn(num_imgs, 4, self.resolution//vae_scale_factor,self.resolution//vae_scale_factor).to(device,dtype=weight_dtype)
|
814 |
-
zT = zT * self.scheduler.init_noise_sigma
|
815 |
-
|
816 |
-
cond_emb_list, cond_add_text_embeds, add_time_ids = sdxl_prepare_input_decom(
|
817 |
-
set_string_list,
|
818 |
-
self.tokenizer,
|
819 |
-
self.tokenizer_2,
|
820 |
-
self.text_encoder,
|
821 |
-
self.text_encoder_2,
|
822 |
-
length = max_length,
|
823 |
-
bsz = num_imgs,
|
824 |
-
weight_dtype = weight_dtype,
|
825 |
-
normal_token_id_list = normal_token_id_list
|
826 |
-
)
|
827 |
-
|
828 |
-
z0 = self.backward_zT_to_z0_euler_decom(zT, cond_emb_list, cond_add_text_embeds, add_time_ids,
|
829 |
-
guidance_scale = guidance_scale, num_sampling_steps = num_sampling_steps,
|
830 |
-
cond_controller = cond_controller, uncond_controller = uncond_controller,
|
831 |
-
mask_hard = mask_hard, mask_soft = mask_soft, orig_image =orig_image, strength = strength
|
832 |
-
)
|
833 |
-
x0 = latent2image(z0, vae = self.vae)
|
834 |
-
return x0
|
835 |
-
|
836 |
-
@torch.no_grad()
|
837 |
-
def inference_with_mask(
|
838 |
-
self,
|
839 |
-
save_path,
|
840 |
-
guidance_scale = 3,
|
841 |
-
num_sampling_steps = 50,
|
842 |
-
strength = 1,
|
843 |
-
mask_soft = None,
|
844 |
-
mask_hard= None,
|
845 |
-
orig_image=None,
|
846 |
-
mask_list = None,
|
847 |
-
num_imgs = 1,
|
848 |
-
seed = 1,
|
849 |
-
set_string_list = None
|
850 |
-
):
|
851 |
-
if mask_list is not None:
|
852 |
-
mask_list = [m.to(device) for m in mask_list]
|
853 |
-
else:
|
854 |
-
mask_list = self.mask_list
|
855 |
-
if set_string_list is not None:
|
856 |
-
self.set_string_list = set_string_list
|
857 |
-
|
858 |
-
if mask_hard is not None and mask_soft is not None:
|
859 |
-
check_mask_overlap_torch(mask_hard, mask_soft)
|
860 |
-
null_controller = DummyController()
|
861 |
-
decom_controller = GroupedCAController(mask_list = mask_list)
|
862 |
-
x0 = self.sampling(
|
863 |
-
self.set_string_list,
|
864 |
-
guidance_scale = guidance_scale,
|
865 |
-
num_sampling_steps = num_sampling_steps,
|
866 |
-
strength = strength,
|
867 |
-
cond_controller = decom_controller,
|
868 |
-
uncond_controller = null_controller,
|
869 |
-
mask_soft = mask_soft,
|
870 |
-
mask_hard = mask_hard,
|
871 |
-
orig_image = orig_image,
|
872 |
-
num_imgs = num_imgs,
|
873 |
-
seed = seed
|
874 |
-
)
|
875 |
-
save_images(x0, save_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|