Spaces:
Running
Running
import uuid | |
from logging import get_experiment, get_experiment_status, start_experiment | |
import gradio as gr | |
import pandas as pd | |
from PIL import Image | |
from transformers import CLIPModel, CLIPProcessor | |
CLIP_MODEL_PATH = "openai/clip-vit-base-patch32" | |
clip_model = CLIPModel.from_pretrained(CLIP_MODEL_PATH) | |
clip_processor = CLIPProcessor.from_pretrained(CLIP_MODEL_PATH) | |
DESCRIPTION = """Glad to see you here π. | |
You can use this Space to log predictions to [Comet](https://www.comet.ml/site) from Spaces that use Text to Image Diffusion Models. | |
Keep track of all your prompts and generated images so that you remember the good ones! | |
Set your Comet credentials in the Comet Settings tab and create an Experiment for logging data. If you don't have credentials yet, | |
you can [sign up for Comet here](https://www.comet.ml/signup) | |
If you want to continue logging to the same Experiment over multiple sessions, simply provide the experiment name. | |
Set a path to a Space using that uses a Diffusion model and submit your prompt in the Diffusion Model tab | |
** Note: ** This Space will still run even if you don't set credentials | |
""" | |
def predict( | |
model, | |
prompt, | |
experiment_state, | |
): | |
io = gr.Interface.load(model) | |
image = io(prompt) | |
pil_image = Image.open(image) | |
inputs = clip_processor( | |
text=[prompt], | |
images=pil_image, | |
return_tensors="pt", | |
padding=True, | |
) | |
outputs = clip_model(**inputs) | |
clip_score = outputs.logits_per_image.item() / 100.0 | |
experiment = get_experiment(experiment_state) | |
if experiment is not None: | |
image_id = uuid.uuid4().hex | |
experiment.log_image(image, image_id) | |
asset = pd.DataFrame.from_records( | |
[ | |
{ | |
"prompt": prompt, | |
"model": model, | |
"clip_model": CLIP_MODEL_PATH, | |
"clip_score": round(clip_score, 3), | |
} | |
] | |
) | |
experiment.log_table(f"{image_id}.json", asset, orient="records") | |
return image, experiment_state | |
def start_interface(): | |
demo = gr.Blocks() | |
with demo: | |
description = gr.Markdown(DESCRIPTION) | |
with gr.Tabs(): | |
with gr.TabItem(label="Comet Settings"): | |
# credentials | |
comet_api_key = gr.Textbox( | |
label="Comet API Key", | |
placeholder="This is required if you'd like to create an Experiment", | |
) | |
comet_workspace = gr.Textbox(label="Comet Workspace") | |
comet_project_name = gr.Textbox(label="Comet Project Name") | |
comet_experiment_name = gr.Textbox( | |
label="Comet Experiment Name", | |
placeholder=( | |
"Set this if you'd like" | |
"to continue logging to an existing Experiment", | |
), | |
) | |
with gr.Row(): | |
start = gr.Button("Start Experiment", variant="primary") | |
status = gr.Button("Experiment Status") | |
status_output = gr.Textbox(label="Status") | |
experiment_state = gr.Variable(label="Experiment State") | |
start.click( | |
start_experiment, | |
inputs=[ | |
comet_api_key, | |
comet_workspace, | |
comet_project_name, | |
comet_experiment_name, | |
experiment_state, | |
], | |
outputs=[experiment_state, status_output], | |
) | |
status.click( | |
get_experiment_status, | |
inputs=[experiment_state], | |
outputs=[experiment_state, status_output], | |
) | |
with gr.TabItem(label="Diffusion Model"): | |
diff_description = gr.Markdown( | |
"""The Model must be a path to any Space that accepts | |
only text as input and produces an image as an output | |
""" | |
) | |
model = gr.Textbox(label="Model", value="spaces/valhalla/glide-text2im", placeholder="Enter a path to a Space") | |
prompt = gr.Textbox(label="Prompt", value="an oil painting of a corgi", placeholder="Enter your text prompt here") | |
outputs = gr.Image(label="Image") | |
submit = gr.Button("Submit", variant="primary") | |
submit.click( | |
predict, | |
inputs=[model, prompt, experiment_state], | |
outputs=[outputs, experiment_state], | |
) | |
demo.launch() | |
start_interface() | |