Spaces:
Runtime error
Runtime error
Create calculations.py
Browse files- calculations.py +381 -0
calculations.py
ADDED
@@ -0,0 +1,381 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# List of requirements
|
2 |
+
# torch~=1.13
|
3 |
+
# torchvision
|
4 |
+
# opencv-python
|
5 |
+
# scipy
|
6 |
+
# numpy
|
7 |
+
# tqdm
|
8 |
+
# timm
|
9 |
+
# einops
|
10 |
+
# scikit-video
|
11 |
+
# pillow
|
12 |
+
# logger
|
13 |
+
# diffusers
|
14 |
+
# transformers
|
15 |
+
# accelerate
|
16 |
+
# requests
|
17 |
+
# pycocoevalcap
|
18 |
+
|
19 |
+
import os
|
20 |
+
import torch
|
21 |
+
import cv2
|
22 |
+
import numpy as np
|
23 |
+
from PIL import Image
|
24 |
+
from transformers import CLIPProcessor, CLIPModel, AutoTokenizer
|
25 |
+
import time
|
26 |
+
import logging
|
27 |
+
from tqdm import tqdm
|
28 |
+
import argparse
|
29 |
+
import torchvision.transforms as transforms
|
30 |
+
from torchvision.transforms import Resize
|
31 |
+
from torchvision.utils import save_image
|
32 |
+
from diffusers import StableDiffusionXLPipeline
|
33 |
+
import requests
|
34 |
+
from transformers import AutoProcessor, Blip2ForConditionalGeneration
|
35 |
+
import ipdb
|
36 |
+
from pycocoevalcap.cider.cider import Cider
|
37 |
+
from pycocoevalcap.bleu.bleu import Bleu
|
38 |
+
|
39 |
+
def calculate_clip_score(video_path, text, model, tokenizer):
|
40 |
+
# Load the video
|
41 |
+
cap = cv2.VideoCapture(video_path)
|
42 |
+
|
43 |
+
# Extract frames from the video
|
44 |
+
frames = []
|
45 |
+
|
46 |
+
while cap.isOpened():
|
47 |
+
ret, frame = cap.read()
|
48 |
+
if not ret:
|
49 |
+
break
|
50 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
51 |
+
resized_frame = cv2.resize(frame,(224,224)) # Resize the frame to match the expected input size
|
52 |
+
frames.append(resized_frame)
|
53 |
+
|
54 |
+
# Convert numpy arrays to tensors, change dtype to float, and resize frames
|
55 |
+
tensor_frames = [torch.from_numpy(frame).permute(2, 0, 1).float() for frame in frames]
|
56 |
+
|
57 |
+
# Initialize an empty tensor to store the concatenated features
|
58 |
+
concatenated_features = torch.tensor([], device=device)
|
59 |
+
|
60 |
+
# Generate embeddings for each frame and concatenate the features
|
61 |
+
with torch.no_grad():
|
62 |
+
for frame in tensor_frames:
|
63 |
+
frame_input = frame.unsqueeze(0).to(device) # Add batch dimension and move the frame to the device
|
64 |
+
frame_features = model.get_image_features(frame_input)
|
65 |
+
concatenated_features = torch.cat((concatenated_features, frame_features), dim=0)
|
66 |
+
|
67 |
+
# Tokenize the text
|
68 |
+
text_tokens = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=77)
|
69 |
+
|
70 |
+
# Convert the tokenized text to a tensor and move it to the device
|
71 |
+
text_input = text_tokens["input_ids"].to(device)
|
72 |
+
|
73 |
+
# Generate text embeddings
|
74 |
+
with torch.no_grad():
|
75 |
+
text_features = model.get_text_features(text_input)
|
76 |
+
|
77 |
+
# Calculate the cosine similarity scores
|
78 |
+
concatenated_features = concatenated_features / concatenated_features.norm(p=2, dim=-1, keepdim=True)
|
79 |
+
text_features = text_features / text_features.norm(p=2, dim=-1, keepdim=True)
|
80 |
+
clip_score_frames = concatenated_features @ text_features.T
|
81 |
+
# Calculate the average CLIP score across all frames, reflects temporal consistency
|
82 |
+
clip_score_frames_avg = clip_score_frames.mean().item()
|
83 |
+
|
84 |
+
return clip_score_frames_avg
|
85 |
+
|
86 |
+
def calculate_clip_temp_score(video_path, model):
|
87 |
+
# Load the video
|
88 |
+
cap = cv2.VideoCapture(video_path)
|
89 |
+
to_tensor = transforms.ToTensor()
|
90 |
+
# Extract frames from the video
|
91 |
+
frames = []
|
92 |
+
SD_images = []
|
93 |
+
resize = transforms.Resize([224,224])
|
94 |
+
while cap.isOpened():
|
95 |
+
ret, frame = cap.read()
|
96 |
+
if not ret:
|
97 |
+
break
|
98 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
99 |
+
# resized_frame = cv2.resize(frame,(224,224)) # Resize the frame to match the expected input size
|
100 |
+
frames.append(frame)
|
101 |
+
|
102 |
+
tensor_frames = torch.stack([resize(torch.from_numpy(frame).permute(2, 0, 1).float()) for frame in frames])
|
103 |
+
|
104 |
+
# tensor_frames = [extracted_frames[i] for i in range(extracted_frames.size()[0])]
|
105 |
+
concatenated_frame_features = []
|
106 |
+
|
107 |
+
# Generate embeddings for each frame and concatenate the features
|
108 |
+
with torch.no_grad():
|
109 |
+
for frame in tensor_frames: # Too many frames in a video, must split before CLIP embedding, limited by the memory
|
110 |
+
frame_input = frame.unsqueeze(0).to(device) # Add batch dimension and move the frame to the device
|
111 |
+
frame_feature = model.get_image_features(frame_input)
|
112 |
+
concatenated_frame_features.append(frame_feature)
|
113 |
+
|
114 |
+
concatenated_frame_features = torch.cat(concatenated_frame_features, dim=0)
|
115 |
+
|
116 |
+
# Calculate the similarity scores
|
117 |
+
clip_temp_score = []
|
118 |
+
concatenated_frame_features = concatenated_frame_features / concatenated_frame_features.norm(p=2, dim=-1, keepdim=True)
|
119 |
+
# ipdb.set_trace()
|
120 |
+
|
121 |
+
for i in range(concatenated_frame_features.size()[0]-1):
|
122 |
+
clip_temp_score.append(concatenated_frame_features[i].unsqueeze(0) @ concatenated_frame_features[i+1].unsqueeze(0).T)
|
123 |
+
clip_temp_score=torch.cat(clip_temp_score, dim=0)
|
124 |
+
# Calculate the average CLIP score across all frames, reflects temporal consistency
|
125 |
+
clip_temp_score_avg = clip_temp_score.mean().item()
|
126 |
+
|
127 |
+
return clip_temp_score_avg
|
128 |
+
|
129 |
+
def compute_max(scorer, gt_prompts, pred_prompts):
|
130 |
+
scores = []
|
131 |
+
for pred_prompt in pred_prompts:
|
132 |
+
for gt_prompt in gt_prompts:
|
133 |
+
cand = {0: [pred_prompt]}
|
134 |
+
ref = {0: [gt_prompt]}
|
135 |
+
score, _ = scorer.compute_score(ref, cand)
|
136 |
+
scores.append(score)
|
137 |
+
return np.max(scores)
|
138 |
+
|
139 |
+
def calculate_blip_bleu(video_path, original_text, blip2_model, blip2_processor):
|
140 |
+
# Load the video
|
141 |
+
cap = cv2.VideoCapture(video_path)
|
142 |
+
|
143 |
+
scorer_cider = Cider()
|
144 |
+
bleu1 = Bleu(n=1)
|
145 |
+
bleu2 = Bleu(n=2)
|
146 |
+
bleu3 = Bleu(n=3)
|
147 |
+
bleu4 = Bleu(n=4)
|
148 |
+
|
149 |
+
# Extract frames from the video
|
150 |
+
frames = []
|
151 |
+
while cap.isOpened():
|
152 |
+
ret, frame = cap.read()
|
153 |
+
if not ret:
|
154 |
+
break
|
155 |
+
resized_frame = cv2.resize(frame,(224,224)) # Resize the frame to match the expected input size
|
156 |
+
frames.append(resized_frame)
|
157 |
+
|
158 |
+
# Convert numpy arrays to tensors, change dtype to float, and resize frames
|
159 |
+
tensor_frames = torch.stack([torch.from_numpy(frame).permute(2, 0, 1).float() for frame in frames])
|
160 |
+
# Get five captions for one video
|
161 |
+
Num = 5
|
162 |
+
captions = []
|
163 |
+
# for i in range(Num):
|
164 |
+
N = len(tensor_frames)
|
165 |
+
indices = torch.linspace(0, N - 1, Num).long()
|
166 |
+
extracted_frames = torch.index_select(tensor_frames, 0, indices)
|
167 |
+
for i in range(Num):
|
168 |
+
frame = extracted_frames[i]
|
169 |
+
inputs = blip2_processor(images=frame, return_tensors="pt").to(device, torch.float16)
|
170 |
+
generated_ids = blip2_model.generate(**inputs)
|
171 |
+
generated_text = blip2_processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
|
172 |
+
captions.append(generated_text)
|
173 |
+
|
174 |
+
|
175 |
+
original_text = [original_text]
|
176 |
+
cider_score = (compute_max(scorer_cider, original_text, captions))
|
177 |
+
bleu1_score = (compute_max(bleu1, original_text, captions))
|
178 |
+
bleu2_score = (compute_max(bleu2, original_text, captions))
|
179 |
+
bleu3_score = (compute_max(bleu3, original_text, captions))
|
180 |
+
bleu4_score = (compute_max(bleu4, original_text, captions))
|
181 |
+
|
182 |
+
blip_bleu_caps_avg = (bleu1_score + bleu2_score + bleu3_score + bleu4_score)/4
|
183 |
+
|
184 |
+
return blip_bleu_caps_avg
|
185 |
+
|
186 |
+
def calculate_sd_score(video_path, text, pipe, model):
|
187 |
+
# Load the video
|
188 |
+
output_dir = "../../SDXL_Imgs"
|
189 |
+
if not os.path.exists(output_dir):
|
190 |
+
os.mkdir(output_dir)
|
191 |
+
cap = cv2.VideoCapture(video_path)
|
192 |
+
to_tensor = transforms.ToTensor()
|
193 |
+
# Extract frames from the video
|
194 |
+
frames = []
|
195 |
+
SD_images = []
|
196 |
+
Num = 5
|
197 |
+
resize = transforms.Resize([224,224])
|
198 |
+
while cap.isOpened():
|
199 |
+
ret, frame = cap.read()
|
200 |
+
if not ret:
|
201 |
+
break
|
202 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
203 |
+
# resized_frame = cv2.resize(frame,(224,224)) # Resize the frame to match the expected input size
|
204 |
+
frames.append(frame)
|
205 |
+
|
206 |
+
# Load SD imgs from local paths
|
207 |
+
for i in range(Num): ## Num images for every prompt
|
208 |
+
output_dir = "../../SDXL_Imgs"
|
209 |
+
# ipdb.set_trace()
|
210 |
+
SD_image_path = os.path.join(output_dir, f"{os.path.basename(video_path).split('.')[0]}_{i}.png")
|
211 |
+
if os.path.exists(SD_image_path):
|
212 |
+
image = Image.open(SD_image_path)
|
213 |
+
# Convert the image to a tensor
|
214 |
+
image = resize(to_tensor(image))
|
215 |
+
SD_images.append(image.unsqueeze(0))
|
216 |
+
else:
|
217 |
+
image = pipe(text, height = 512, width= 512, num_inference_steps = 20).images[0] #!!!!! same amount of SD images, but also can be mutiple times, TODO
|
218 |
+
# Convert the image to a tensor
|
219 |
+
image = resize(to_tensor(image))
|
220 |
+
SD_images.append(image.unsqueeze(0))
|
221 |
+
save_image(image,SD_image_path)
|
222 |
+
|
223 |
+
tensor_frames = [resize(torch.from_numpy(frame).permute(2, 0, 1).float()) for frame in frames]
|
224 |
+
SD_images = torch.cat(SD_images, 0)
|
225 |
+
|
226 |
+
concatenated_frame_features = []
|
227 |
+
concatenated_SDImg_features = []
|
228 |
+
# Generate embeddings for each frame and concatenate the features
|
229 |
+
with torch.no_grad():
|
230 |
+
for frame in tensor_frames: # Too many frames in a video, must split before CLIP embedding, limited by the memory
|
231 |
+
frame_input = frame.unsqueeze(0).to(device) # Add batch dimension and move the frame to the device
|
232 |
+
frame_feature = model.get_image_features(frame_input)
|
233 |
+
concatenated_frame_features.append(frame_feature)
|
234 |
+
|
235 |
+
for i in range(SD_images.size()[0]):
|
236 |
+
img = SD_images[i].unsqueeze(0).to(device) # Add batch dimension and move the frame to the device
|
237 |
+
SDImg_feature = model.get_image_features(img)
|
238 |
+
concatenated_SDImg_features.append(SDImg_feature)
|
239 |
+
# ipdb.set_trace()
|
240 |
+
concatenated_frame_features = torch.cat(concatenated_frame_features, dim=0)
|
241 |
+
concatenated_SDImg_features = torch.cat(concatenated_SDImg_features, dim=0)
|
242 |
+
|
243 |
+
# Calculate the similarity scores
|
244 |
+
concatenated_frame_features = concatenated_frame_features / concatenated_frame_features.norm(p=2, dim=-1, keepdim=True)
|
245 |
+
concatenated_SDImg_features = concatenated_SDImg_features / concatenated_SDImg_features.norm(p=2, dim=-1, keepdim=True)
|
246 |
+
sd_score_frames = concatenated_frame_features @ concatenated_SDImg_features.T
|
247 |
+
# Calculate the average CLIP score across all frames, reflects temporal consistency
|
248 |
+
sd_score_frames_avg = sd_score_frames.mean().item()
|
249 |
+
|
250 |
+
return sd_score_frames_avg
|
251 |
+
|
252 |
+
def calculate_face_consistency_score(video_path, model):
|
253 |
+
# Load the video
|
254 |
+
cap = cv2.VideoCapture(video_path)
|
255 |
+
to_tensor = transforms.ToTensor()
|
256 |
+
# Extract frames from the video
|
257 |
+
frames = []
|
258 |
+
SD_images = []
|
259 |
+
resize = transforms.Resize([224,224])
|
260 |
+
while cap.isOpened():
|
261 |
+
ret, frame = cap.read()
|
262 |
+
if not ret:
|
263 |
+
break
|
264 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
265 |
+
# resized_frame = cv2.resize(frame,(224,224)) # Resize the frame to match the expected input size
|
266 |
+
frames.append(frame)
|
267 |
+
|
268 |
+
tensor_frames = [resize(torch.from_numpy(frame).permute(2, 0, 1).float()) for frame in frames]
|
269 |
+
concatenated_frame_features = []
|
270 |
+
|
271 |
+
# Generate embeddings for each frame and concatenate the features
|
272 |
+
with torch.no_grad():
|
273 |
+
for frame in tensor_frames: # Too many frames in a video, must split before CLIP embedding, limited by the memory
|
274 |
+
frame_input = frame.unsqueeze(0).to(device) # Add batch dimension and move the frame to the device
|
275 |
+
frame_feature = model.get_image_features(frame_input)
|
276 |
+
concatenated_frame_features.append(frame_feature)
|
277 |
+
|
278 |
+
concatenated_frame_features = torch.cat(concatenated_frame_features, dim=0)
|
279 |
+
|
280 |
+
# Calculate the similarity scores
|
281 |
+
concatenated_frame_features = concatenated_frame_features / concatenated_frame_features.norm(p=2, dim=-1, keepdim=True)
|
282 |
+
face_consistency_score = concatenated_frame_features[1:] @ concatenated_frame_features[0].unsqueeze(0).T
|
283 |
+
# Calculate the average CLIP score across all frames, reflects temporal consistency
|
284 |
+
face_consistency_score_avg = face_consistency_score.mean().item()
|
285 |
+
|
286 |
+
return face_consistency_score_avg
|
287 |
+
|
288 |
+
def read_text_file(file_path):
|
289 |
+
with open(file_path, 'r') as f:
|
290 |
+
return f.read().strip()
|
291 |
+
|
292 |
+
|
293 |
+
if __name__ == '__main__':
|
294 |
+
parser = argparse.ArgumentParser()
|
295 |
+
parser.add_argument("--dir_videos", type=str, default='', help="Specify the path of generated videos")
|
296 |
+
parser.add_argument("--metric", type=str, default='celebrity_id_score', help="Specify the metric to be used")
|
297 |
+
args = parser.parse_args()
|
298 |
+
|
299 |
+
dir_videos = args.dir_videos
|
300 |
+
metric = args.metric
|
301 |
+
|
302 |
+
dir_prompts = '../../prompts/'
|
303 |
+
|
304 |
+
video_paths = [os.path.join(dir_videos, x) for x in os.listdir(dir_videos)]
|
305 |
+
prompt_paths = [os.path.join(dir_prompts, os.path.splitext(os.path.basename(x))[0]+'.txt') for x in video_paths]
|
306 |
+
|
307 |
+
# Create the directory if it doesn't exist
|
308 |
+
timestamp = time.strftime("%Y%m%d-%H%M%S")
|
309 |
+
os.makedirs(f"../../results", exist_ok=True)
|
310 |
+
# Set up logging
|
311 |
+
log_file_path = f"../../results/{metric}_record.txt"
|
312 |
+
# Delete the log file if it exists
|
313 |
+
if os.path.exists(log_file_path):
|
314 |
+
os.remove(log_file_path)
|
315 |
+
# Set up logging
|
316 |
+
logger = logging.getLogger()
|
317 |
+
logger.setLevel(logging.INFO)
|
318 |
+
# File handler for writing logs to a file
|
319 |
+
file_handler = logging.FileHandler(filename=f"../../results/{metric}_record.txt")
|
320 |
+
file_handler.setFormatter(logging.Formatter("%(asctime)s %(message)s", datefmt="%Y-%m-%d %H:%M:%S"))
|
321 |
+
logger.addHandler(file_handler)
|
322 |
+
# Stream handler for displaying logs in the terminal
|
323 |
+
stream_handler = logging.StreamHandler()
|
324 |
+
stream_handler.setFormatter(logging.Formatter("%(asctime)s %(message)s", datefmt="%Y-%m-%d %H:%M:%S"))
|
325 |
+
logger.addHandler(stream_handler)
|
326 |
+
|
327 |
+
|
328 |
+
# Load pretrained models
|
329 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
330 |
+
|
331 |
+
|
332 |
+
if metric == 'blip_bleu':
|
333 |
+
blip2_processor = AutoProcessor.from_pretrained("../../checkpoints/blip2-opt-2.7b")
|
334 |
+
blip2_model = Blip2ForConditionalGeneration.from_pretrained("../../checkpoints/blip2-opt-2.7b", torch_dtype=torch.float16).to(device)
|
335 |
+
elif metric == 'sd_score':
|
336 |
+
clip_model = CLIPModel.from_pretrained("../../checkpoints/clip-vit-base-patch32").to(device)
|
337 |
+
clip_tokenizer = AutoTokenizer.from_pretrained("../../checkpoints/clip-vit-base-patch32")
|
338 |
+
output_dir = "/apdcephfs/share_1290939/raphaelliu/Vid_Eval/Video_Gen/prompt700-release/SDXL_Imgs"
|
339 |
+
SD_image_path = os.path.join(output_dir, f"{os.path.basename(os.path.basename(video_paths[0]).split('.')[0])}_0.png")
|
340 |
+
# if os.path.exists(SD_image_path):
|
341 |
+
# pipe = None
|
342 |
+
# else:
|
343 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(
|
344 |
+
"../../checkpoints/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16)
|
345 |
+
pipe = pipe.to(device)
|
346 |
+
else:
|
347 |
+
clip_model = CLIPModel.from_pretrained("../../checkpoints/clip-vit-base-patch32").to(device)
|
348 |
+
clip_tokenizer = AutoTokenizer.from_pretrained("../../checkpoints/clip-vit-base-patch32")
|
349 |
+
|
350 |
+
# Calculate SD scores for all video-text pairs
|
351 |
+
scores = []
|
352 |
+
|
353 |
+
test_num = 10
|
354 |
+
test_num = len(video_paths)
|
355 |
+
count = 0
|
356 |
+
for i in tqdm(range(len(video_paths))):
|
357 |
+
video_path = video_paths[i]
|
358 |
+
prompt_path = prompt_paths[i]
|
359 |
+
if count == test_num:
|
360 |
+
break
|
361 |
+
else:
|
362 |
+
text = read_text_file(prompt_path)
|
363 |
+
# ipdb.set_trace()
|
364 |
+
if metric == 'clip_score':
|
365 |
+
score = calculate_clip_score(video_path, text, clip_model, clip_tokenizer)
|
366 |
+
elif metric == 'blip_bleu':
|
367 |
+
score = calculate_blip_bleu(video_path, text, blip2_model, blip2_processor)
|
368 |
+
elif metric == 'sd_score':
|
369 |
+
score = calculate_sd_score(video_path, text, pipe,clip_model)
|
370 |
+
elif metric == 'clip_temp_score':
|
371 |
+
score = calculate_clip_temp_score(video_path,clip_model)
|
372 |
+
elif metric == 'face_consistency_score':
|
373 |
+
score = calculate_face_consistency_score(video_path,clip_model)
|
374 |
+
count+=1
|
375 |
+
scores.append(score)
|
376 |
+
average_score = sum(scores) / len(scores)
|
377 |
+
# count+=1
|
378 |
+
logging.info(f"Vid: {os.path.basename(video_path)}, Current {metric}: {score}, Current avg. {metric}: {average_score}, ")
|
379 |
+
|
380 |
+
# Calculate the average SD score across all video-text pairs
|
381 |
+
logging.info(f"Final average {metric}: {average_score}, Total videos: {len(scores)}")
|