File size: 4,070 Bytes
ea219dd
 
 
 
 
 
 
 
 
253ae42
 
 
ea219dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
253ae42
ea219dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
253ae42
 
ea219dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import torch
import os
import requests
import hf_transfer
import numpy as np
import io
from transformers import DynamicCache
import os
import spaces
import httpx
import tqdm


os.makedirs("tmp", exist_ok=True)

def generate_answer(
    model, tokenizer, question_ids, cache, context_length, max_new_tokens
):
    """
    Generate an answer to a question using greedy decoding.

    Parameters:
        model: Model instance
        tokenizer: Tokenizer instance
        question_ids (torch.Tensor): Tokenized question.
        cache (DynamicCache): Key-value cache.
        context_length (int): Length of the context.
        max_new_tokens (int): Max number of tokens to generate.

    Returns:
        str: Generated answer.
    """
    question_ids = question_ids.to("cuda")
    cache_seq_lengths = [
        cache.get_seq_length(layer_idx) for layer_idx in range(len(cache))
    ]

    position_ids = torch.arange(
        context_length, context_length + question_ids.shape[1], device=model.device
    ).unsqueeze(0)

    outputs = model(
        input_ids=question_ids.to(model.device),
        past_key_values=cache,
        position_ids=position_ids,
        num_logits_to_keep=1,
    )

    position_ids = position_ids[:, -1:] + 1
    generated_ids = [outputs.logits[0, -1].argmax()]

    for _ in range(max_new_tokens - 1):
        outputs = model(
            input_ids=generated_ids[-1].unsqueeze(0).unsqueeze(0),
            past_key_values=cache,
            position_ids=position_ids + _,
        )
        new_id = outputs.logits[0, -1].argmax()
        generated_ids.append(new_id)
        if new_id.item() == model.generation_config.eos_token_id:
            break

    answer = tokenizer.decode(torch.stack(generated_ids), skip_special_tokens=True)

    cache.key_cache = [
        key[:, :, :c] for key, c in zip(cache.key_cache, cache_seq_lengths)
    ]
    cache.value_cache = [
        value[:, :, :c] for value, c in zip(cache.value_cache, cache_seq_lengths)
    ]

    return answer

def get_condense_kv_cache(context: str):
    url = "https://ncs-client.condenses.ai/api/organic"
    payload = {
        "tier": "research",
        "target_model": "mistralai/Mistral-7B-Instruct-v0.2",
        "context": context,
        "top_incentive": 0.1
    }
    headers = {
        "accept": "application/json",
        "content-type": "application/json",
        "user-api-key": os.getenv("CONDENSE_API_KEY"),
    }
    response = requests.post(url, json=payload, headers=headers).json()
    print(response)
    numpy_kv_cache, error = load_npy_from_url(response["compressed_kv_url"])
    if error:
        print(error)
    kv_cache = DynamicCache.from_legacy_cache(
        torch.from_numpy(numpy_kv_cache).to("cuda").to(torch.bfloat16)
    )
    return kv_cache

def load_npy_from_url(url, max_size_mb=1024):
    """
    Load a `.npy` file from a URL using hf_transfer.

    Parameters:
        url (str): URL of the `.npy` file.
        max_size_mb (int): Max file size in megabytes.

    Returns:
        tuple: (Loaded NumPy array, Error message).
    """
    try:
        with httpx.Client() as client:
            response = client.head(url)
            if response.status_code != 200:
                return None, f"Failed to fetch file info: HTTP {response.status_code}"

            content_length = int(response.headers.get("content-length", 0))
            if content_length > max_size_mb * 1024 * 1024:
                return None, f"File too large: {content_length / (1024 * 1024):.1f}MB exceeds {max_size_mb}MB limit"

        filename = os.path.join("tmp", url.split("/")[-1])
        with tqdm(total=content_length, unit="B", unit_scale=True, desc="Downloading") as pbar:
            hf_transfer.download(
                url=url, filename=filename, chunk_size=1024 * 1024, callback=pbar.update
            )

        with open(filename, "rb") as f:
            buffer = io.BytesIO(f.read())
            data = np.load(buffer)

        os.remove(filename)
        return data, ""
    except Exception as e:
        return None, str(e)