Spaces:
Sleeping
Sleeping
import gradio as gr | |
from gradio_pdf import PDF | |
from transformers import AutoModelForCausalLM, AutoTokenizer, DynamicCache | |
from pathlib import Path | |
from markitdown import MarkItDown | |
from utils import generate_answer, get_condense_kv_cache | |
import spaces | |
import torch | |
MID = MarkItDown() | |
MODEL_ID = "unsloth/Mistral-7B-Instruct-v0.2" | |
MODEL = AutoModelForCausalLM.from_pretrained(MODEL_ID, torch_dtype=torch.bfloat16) | |
TOKENIZER = AutoTokenizer.from_pretrained(MODEL_ID) | |
MAX_CHARS_TO_COMPRESS = 15000 | |
def get_model_kv_cache(context_ids): | |
context_ids = context_ids.to("cuda") | |
past_key_values = MODEL(context_ids, num_logits_to_keep=1).past_key_values | |
kv_cache = DynamicCache.from_legacy_cache( | |
past_key_values | |
) | |
return kv_cache | |
def inference(question: str, doc_path: str, use_turbo=True) -> str: | |
MODEL.to("cuda") | |
question = "\n\nBased on above informations, answer this question: " + question | |
doc_md = MID.convert(doc_path) | |
doc_text = doc_md.text_content[:20000] | |
to_compress_doc = "<s> [INST] " + doc_text[:MAX_CHARS_TO_COMPRESS] | |
remaining_doc_and_question_prompt = doc_text[MAX_CHARS_TO_COMPRESS:] + question + " [/INST] " | |
prompt_ids = TOKENIZER.encode(remaining_doc_and_question_prompt, add_special_tokens=False, return_tensors="pt") | |
context_ids = TOKENIZER.encode(to_compress_doc, add_special_tokens=False, return_tensors="pt") | |
context_length = context_ids.shape[1] | |
if use_turbo: | |
print("turbo-mode-on") | |
kv_cache = get_condense_kv_cache(to_compress_doc) | |
kv_cache = kv_cache.to("cuda") | |
else: | |
print("turbo-mode-off") | |
kv_cache = get_model_kv_cache(context_ids) | |
print("kv-length", kv_cache.get_seq_length()) | |
answer = generate_answer(MODEL, TOKENIZER, prompt_ids, kv_cache, context_length, 128) | |
print(answer) | |
return answer | |
demo = gr.Interface( | |
inference, | |
[gr.Textbox(label="Question"), PDF(label="Document"), gr.Checkbox(label="Turbo Bittensor", info="Use Subnet 47 API for Prefilling")], | |
gr.Textbox(), | |
) | |
if __name__ == "__main__": | |
demo.launch(share=True) |