Spaces:
Sleeping
Sleeping
update
Browse files
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
from gradio_pdf import PDF
|
3 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
from pathlib import Path
|
5 |
from markitdown import MarkItDown
|
6 |
from utils import generate_answer, get_condense_kv_cache
|
@@ -10,18 +10,23 @@ import torch
|
|
10 |
|
11 |
MID = MarkItDown()
|
12 |
MODEL_ID = "unsloth/Mistral-7B-Instruct-v0.2"
|
13 |
-
MODEL = AutoModelForCausalLM.from_pretrained(MODEL_ID, torch_dtype=torch.bfloat16)
|
14 |
TOKENIZER = AutoTokenizer.from_pretrained(MODEL_ID)
|
15 |
MAX_CHARS_TO_COMPRESS = 15000
|
16 |
|
17 |
@torch.no_grad()
|
18 |
-
|
19 |
def get_model_kv_cache(context_ids):
|
20 |
context_ids = context_ids.to("cuda")
|
21 |
past_key_values = MODEL(context_ids, num_logits_to_keep=1).past_key_values
|
|
|
|
|
|
|
22 |
return past_key_values
|
23 |
|
|
|
24 |
def inference(question: str, doc_path: str, use_turbo=True) -> str:
|
|
|
25 |
question = "\n\nBased on above informations, answer this question: " + question
|
26 |
doc_md = MID.convert(doc_path)
|
27 |
doc_text = doc_md.text_content[:20000]
|
@@ -51,7 +56,6 @@ demo = gr.Interface(
|
|
51 |
inference,
|
52 |
[gr.Textbox(label="Question"), PDF(label="Document"), gr.Checkbox(label="Turbo Bittensor", info="Use Subnet 47 API for Prefilling")],
|
53 |
gr.Textbox(),
|
54 |
-
examples=[["What is the total gross worth?", "phi-4.pdf"]]
|
55 |
)
|
56 |
|
57 |
if __name__ == "__main__":
|
|
|
1 |
import gradio as gr
|
2 |
from gradio_pdf import PDF
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, DynamicCache
|
4 |
from pathlib import Path
|
5 |
from markitdown import MarkItDown
|
6 |
from utils import generate_answer, get_condense_kv_cache
|
|
|
10 |
|
11 |
MID = MarkItDown()
|
12 |
MODEL_ID = "unsloth/Mistral-7B-Instruct-v0.2"
|
13 |
+
MODEL = AutoModelForCausalLM.from_pretrained(MODEL_ID, torch_dtype=torch.bfloat16)
|
14 |
TOKENIZER = AutoTokenizer.from_pretrained(MODEL_ID)
|
15 |
MAX_CHARS_TO_COMPRESS = 15000
|
16 |
|
17 |
@torch.no_grad()
|
18 |
+
|
19 |
def get_model_kv_cache(context_ids):
|
20 |
context_ids = context_ids.to("cuda")
|
21 |
past_key_values = MODEL(context_ids, num_logits_to_keep=1).past_key_values
|
22 |
+
kv_cache = DynamicCache.from_legacy_cache(
|
23 |
+
past_key_values
|
24 |
+
)
|
25 |
return past_key_values
|
26 |
|
27 |
+
@spaces.GPU
|
28 |
def inference(question: str, doc_path: str, use_turbo=True) -> str:
|
29 |
+
MODEL.to("cuda")
|
30 |
question = "\n\nBased on above informations, answer this question: " + question
|
31 |
doc_md = MID.convert(doc_path)
|
32 |
doc_text = doc_md.text_content[:20000]
|
|
|
56 |
inference,
|
57 |
[gr.Textbox(label="Question"), PDF(label="Document"), gr.Checkbox(label="Turbo Bittensor", info="Use Subnet 47 API for Prefilling")],
|
58 |
gr.Textbox(),
|
|
|
59 |
)
|
60 |
|
61 |
if __name__ == "__main__":
|
utils.py
CHANGED
@@ -10,7 +10,6 @@ import spaces
|
|
10 |
|
11 |
os.makedirs("tmp", exist_ok=True)
|
12 |
|
13 |
-
@spaces.GPU
|
14 |
def generate_answer(
|
15 |
model, tokenizer, question_ids, cache, context_length, max_new_tokens
|
16 |
):
|
|
|
10 |
|
11 |
os.makedirs("tmp", exist_ok=True)
|
12 |
|
|
|
13 |
def generate_answer(
|
14 |
model, tokenizer, question_ids, cache, context_length, max_new_tokens
|
15 |
):
|