import gradio as gr from gradio_pdf import PDF from transformers import AutoModelForCausalLM, AutoTokenizer, DynamicCache from pathlib import Path from markitdown import MarkItDown from utils import generate_answer, get_condense_kv_cache import spaces import torch MID = MarkItDown() MODEL_ID = "unsloth/Mistral-7B-Instruct-v0.2" MODEL = AutoModelForCausalLM.from_pretrained(MODEL_ID, torch_dtype=torch.bfloat16) TOKENIZER = AutoTokenizer.from_pretrained(MODEL_ID) MAX_CHARS_TO_COMPRESS = 15000 @torch.no_grad() def get_model_kv_cache(context_ids): context_ids = context_ids.to("cuda") past_key_values = MODEL(context_ids, num_logits_to_keep=1).past_key_values kv_cache = DynamicCache.from_legacy_cache( past_key_values ) return kv_cache @spaces.GPU def inference(question: str, doc_path: str, use_turbo=True) -> str: MODEL.to("cuda") question = "\n\nBased on above informations, answer this question: " + question doc_md = MID.convert(doc_path) doc_text = doc_md.text_content[:20000] to_compress_doc = "<s> [INST] " + doc_text[:MAX_CHARS_TO_COMPRESS] remaining_doc_and_question_prompt = doc_text[MAX_CHARS_TO_COMPRESS:] + question + " [/INST] " prompt_ids = TOKENIZER.encode(remaining_doc_and_question_prompt, add_special_tokens=False, return_tensors="pt") context_ids = TOKENIZER.encode(to_compress_doc, add_special_tokens=False, return_tensors="pt") context_length = context_ids.shape[1] if use_turbo: print("turbo-mode-on") kv_cache = get_condense_kv_cache(to_compress_doc) kv_cache = kv_cache.to("cuda") else: print("turbo-mode-off") kv_cache = get_model_kv_cache(context_ids) print("kv-length", kv_cache.get_seq_length()) answer = generate_answer(MODEL, TOKENIZER, prompt_ids, kv_cache, context_length, 128) print(answer) return answer demo = gr.Interface( inference, [gr.Textbox(label="Question"), PDF(label="Document"), gr.Checkbox(label="Turbo Bittensor", info="Use Subnet 47 API for Prefilling")], gr.Textbox(), ) if __name__ == "__main__": demo.launch(share=True)