Conner commited on
Commit
0014786
·
1 Parent(s): 0a38d50

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -1
app.py CHANGED
@@ -1,6 +1,16 @@
1
  from keras.models import load_model
2
  from PIL import Image, ImageOps
3
  import numpy as np
 
 
 
 
 
 
 
 
 
 
4
 
5
  # Load the model
6
  model = load_model('keras_model.h5')
@@ -10,7 +20,9 @@ model = load_model('keras_model.h5')
10
  # determined by the first position in the shape tuple, in this case 1.
11
  data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)
12
  # Replace this with the path to your image
13
- image = Image.open('<IMAGE_PATH>')
 
 
14
  #resize the image to a 224x224 with the same strategy as in TM2:
15
  #resizing the image to be at least 224x224 and then cropping from the center
16
  size = (224, 224)
@@ -26,3 +38,5 @@ data[0] = normalized_image_array
26
  # run the inference
27
  prediction = model.predict(data)
28
  print(prediction)
 
 
 
1
  from keras.models import load_model
2
  from PIL import Image, ImageOps
3
  import numpy as np
4
+ import gradio as gr
5
+
6
+ gr.Interface(fn=predict,
7
+ ),
8
+ outputs=gr.outputs.Label(num_top_classes=3),
9
+
10
+
11
+ def greet(name):
12
+ return "Hello " + name + "!!"
13
+ def predict:
14
 
15
  # Load the model
16
  model = load_model('keras_model.h5')
 
20
  # determined by the first position in the shape tuple, in this case 1.
21
  data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)
22
  # Replace this with the path to your image
23
+
24
+ inputs=gr.inputs.Image(type="pil"
25
+ # image = Image.open('<IMAGE_PATH>')
26
  #resize the image to a 224x224 with the same strategy as in TM2:
27
  #resizing the image to be at least 224x224 and then cropping from the center
28
  size = (224, 224)
 
38
  # run the inference
39
  prediction = model.predict(data)
40
  print(prediction)
41
+ iface = gr.Interface(fn=greet, inputs="text", outputs="text")
42
+ iface.launch()