Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -8,30 +8,26 @@ def greet(name):
|
|
8 |
return "Hello " + name + "!!"
|
9 |
|
10 |
def predict(img):
|
11 |
-
|
12 |
-
# Load the model
|
13 |
model = load_model('keras_model.h5')
|
14 |
-
|
15 |
-
#
|
16 |
-
#
|
17 |
-
# determined by the first position in the shape tuple, in this case 1.
|
18 |
data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)
|
19 |
-
# Replace this with the path to your image
|
20 |
image = img
|
21 |
-
# image = Image.open('<IMAGE_PATH>')
|
22 |
-
#resize the image to a 224x224 with the same strategy as in TM2:
|
23 |
-
#resizing the image to be at least 224x224 and then cropping from the center
|
24 |
size = (224, 224)
|
25 |
image = ImageOps.fit(image, size, Image.ANTIALIAS)
|
26 |
-
|
27 |
-
#turn the image into a numpy array
|
28 |
image_array = np.asarray(image)
|
29 |
-
# Normalize the image
|
30 |
normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1
|
31 |
-
# Load the image into the array
|
32 |
data[0] = normalized_image_array
|
33 |
-
|
34 |
-
# run the inference
|
35 |
prediction = model.predict(data)
|
36 |
gr.outputs.Label = open(labels.txt)
|
37 |
return prediction
|
|
|
8 |
return "Hello " + name + "!!"
|
9 |
|
10 |
def predict(img):
|
11 |
+
# Load the model
|
|
|
12 |
model = load_model('keras_model.h5')
|
13 |
+
# Create the array of the right shape to feed into the keras model
|
14 |
+
# The 'length' or number of images you can put into the array is
|
15 |
+
# determined by the first position in the shape tuple, in this case 1.
|
|
|
16 |
data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)
|
17 |
+
# Replace this with the path to your image
|
18 |
image = img
|
19 |
+
# image = Image.open('<IMAGE_PATH>')
|
20 |
+
#resize the image to a 224x224 with the same strategy as in TM2:
|
21 |
+
#resizing the image to be at least 224x224 and then cropping from the center
|
22 |
size = (224, 224)
|
23 |
image = ImageOps.fit(image, size, Image.ANTIALIAS)
|
24 |
+
#turn the image into a numpy array
|
|
|
25 |
image_array = np.asarray(image)
|
26 |
+
# Normalize the image
|
27 |
normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1
|
28 |
+
# Load the image into the array
|
29 |
data[0] = normalized_image_array
|
30 |
+
# run the inference
|
|
|
31 |
prediction = model.predict(data)
|
32 |
gr.outputs.Label = open(labels.txt)
|
33 |
return prediction
|