conneroisu commited on
Commit
afa9797
·
1 Parent(s): 7a29178

fixed input method

Browse files
Files changed (1) hide show
  1. app.py +9 -9
app.py CHANGED
@@ -17,24 +17,24 @@ def predict(img):
17
  # Create the array of the right shape to feed into the keras model
18
  # The 'length' or number of images you can put into the array is
19
  # determined by the first position in the shape tuple, in this case 1.
20
- data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)
21
  # Replace this with the path to your image
22
- image = Image.open('<IMAGE_PATH>')
23
  #resize the image to a 224x224 with the same strategy as in TM2:
24
  #resizing the image to be at least 224x224 and then cropping from the center
25
- size = (224, 224)
26
- image = ImageOps.fit(image, size, Image.ANTIALIAS)
27
 
28
  #turn the image into a numpy array
29
- image_array = np.asarray(image)
30
  # Normalize the image
31
- normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1
32
  # Load the image into the array
33
- data[0] = normalized_image_array
34
 
35
  # run the inference
36
- prediction = model.predict(data)
37
- print(prediction)
38
  return prediction
39
 
40
 
 
17
  # Create the array of the right shape to feed into the keras model
18
  # The 'length' or number of images you can put into the array is
19
  # determined by the first position in the shape tuple, in this case 1.
20
+ data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)
21
  # Replace this with the path to your image
22
+ image = Image.open('<IMAGE_PATH>')
23
  #resize the image to a 224x224 with the same strategy as in TM2:
24
  #resizing the image to be at least 224x224 and then cropping from the center
25
+ size = (224, 224)
26
+ image = ImageOps.fit(image, size, Image.ANTIALIAS)
27
 
28
  #turn the image into a numpy array
29
+ image_array = np.asarray(image)
30
  # Normalize the image
31
+ normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1
32
  # Load the image into the array
33
+ data[0] = normalized_image_array
34
 
35
  # run the inference
36
+ prediction = model.predict(data)
37
+ print(prediction)
38
  return prediction
39
 
40