File size: 10,364 Bytes
861698e
 
 
 
 
 
 
 
 
 
 
 
 
7437080
f234c19
861698e
 
 
 
 
74730ff
861698e
 
 
 
 
 
66db059
861698e
 
 
6f2e077
66db059
861698e
 
 
 
 
 
 
 
 
afca745
 
4af8daa
 
f234c19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7437080
 
 
 
 
 
 
 
bc1c940
7437080
 
1e93edd
 
 
 
 
 
 
 
 
 
478ce87
1e93edd
 
 
 
 
 
 
 
 
861698e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a72aafd
861698e
1172ef2
861698e
 
1172ef2
861698e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52d0fa7
861698e
 
 
afca745
861698e
 
 
 
 
 
 
 
52d0fa7
6f2e077
861698e
52d0fa7
861698e
 
 
 
 
 
 
 
 
7437080
861698e
 
 
 
 
 
7437080
861698e
 
 
 
 
7437080
f234c19
861698e
3fb14d4
52d0fa7
861698e
 
 
 
4e3189d
861698e
afca745
861698e
09f0aa2
afca745
7f6879d
6f2e077
861698e
afca745
f520f1f
afca745
e059113
861698e
 
 
52d0fa7
861698e
 
e059113
 
861698e
 
 
 
 
52d0fa7
861698e
 
c839051
861698e
 
 
 
 
c91ed12
861698e
 
6f2e077
861698e
 
 
 
 
 
 
7437080
861698e
 
25af94a
861698e
 
 
 
 
c91ed12
861698e
 
 
 
7437080
861698e
29d34bf
861698e
 
 
7437080
29d34bf
861698e
 
 
 
 
 
 
 
 
 
 
 
 
 
ef1bbc9
 
 
 
 
861698e
 
b590546
 
680dda7
b590546
 
 
 
 
f3e5d42
861698e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
import gradio as gr
import cv2
import time
import openai
import base64
import pytz
import uuid
from threading import Thread
from concurrent.futures import ThreadPoolExecutor, as_completed
from datetime import datetime
import json
import os
from gradio_client import Client, file
import subprocess
import ffmpeg

api_key = os.getenv("OPEN_AI_KEY")
user_name = os.getenv("USER_NAME")
password = os.getenv("PASSWORD")

LENGTH = 3
WEBCAM = 0

MARKDOWN = """
# Conntour 
"""
AVATARS = (
    "https://uqnmqpvwlbpmdvutucia.supabase.co/storage/v1/object/public/test/square_padding.png?t=2024-12-26T10%3A36%3A46.488Z",
    "https://media.roboflow.com/spaces/openai-white-logomark.png"
)

VIDEO_PATH = "https://uqnmqpvwlbpmdvutucia.supabase.co/storage/v1/object/public/live-cameras/long_sf_junction.mp4?t=2025-01-14T10%3A09%3A14.826Z"

# Set your OpenAI API key
openai.api_key = api_key
MODEL="gpt-4o"
client = openai.OpenAI(api_key=api_key)

# Global variable to stop the video capture loop
stop_capture = False
alerts_mode = True

base_start_time = time.time()

print("base_start_time", base_start_time)

def clip_video_segment_2(input_video_path, start_time, duration):
    os.makedirs('videos', exist_ok=True)
    output_video_path = f"videos/{uuid.uuid4()}.mp4"
    
    # Use ffmpeg-python to clip the video
    try:
        (
            ffmpeg
            .input(input_video_path, ss=start_time)  # Seek to start_time
            .output(output_video_path, t=duration, c='copy')  # Set the duration
            .run(overwrite_output=True)
        )
        print('input_video_path', input_video_path, output_video_path)
        return output_video_path
    except ffmpeg.Error as e:
        print(f"Error clipping video: {e}")
        return None

def clip_video_segment(input_video_path, start_time, duration):
    os.makedirs('videos', exist_ok=True)
    output_video_path = f"videos/{uuid.uuid4()}.mp4"

    subprocess.call([
        'ffmpeg', '-y', '-ss', str(start_time), '-i', input_video_path,
        '-t', str(duration), '-c', 'copy', output_video_path
    ])
    print('input_video_path', input_video_path, output_video_path)
    return output_video_path

def encode_to_video_fast(frames, fps):
    
    os.makedirs('videos', exist_ok=True)
    video_clip_path = f"videos/{uuid.uuid4()}.mp4"

    # Get frame size
    height, width, layers = frames[0].shape
    size = (width, height)

    # Define the codec and create VideoWriter object
    fourcc = cv2.VideoWriter_fourcc(*"mp4v")  # You can also try 'XVID', 'MJPG', etc.
    out = cv2.VideoWriter(video_clip_path, fourcc, fps, size)

    for frame in frames:
        out.write(frame)

    out.release()

    return video_clip_path

# Function to process video frames using GPT-4 API
def process_frames(frames, frames_to_skip = 1):
    os.makedirs('saved_frames', exist_ok=True)
    curr_frame=0
    base64Frames = []
    while curr_frame < len(frames) - 1:
        _, buffer = cv2.imencode(".jpg", frames[curr_frame])
        base64Frames.append(base64.b64encode(buffer).decode("utf-8"))
        curr_frame += frames_to_skip
    return base64Frames

# Function to check condition using GPT-4 API
def check_condition(prompt, base64Frames):
    start_time = time.time()
    print('checking condition for frames:', len(base64Frames))

        # Save frames as images


    messages = [
        {"role": "system", "content": """You are analyzing video to check if the user's condition is met. 
        Please respond with a JSON object in the following format:
        {"condition_met": true/false, "details": "optional details or summary. in the summary DON'T mention the words: image, images, frame, or frames. Instead, make it look like you were provided with video input and avoid referring to individual images or frames explicitly."}"""},
        {"role": "user", "content": [prompt, *map(lambda x: {"type": "image_url", "image_url": {"url": f'data:image/jpg;base64,{x}', "detail": "low"}}, base64Frames)]}
    ]

    response = client.chat.completions.create(
        model="gpt-4o",
        messages=messages,
        temperature=0,
        response_format={ "type": "json_object" }
    )

    end_time = time.time()
    processing_time = end_time - start_time
    frames_count = len(base64Frames)
    api_response = response.choices[0].message.content
    try:
        jsonNew = json.loads(api_response)
        print('result', response.usage.total_tokens, jsonNew)
        return frames_count, processing_time, jsonNew
    except:
        print('result', response.usage.total_tokens, api_response)
        return frames_count, processing_time, api_response
    

# Function to process video clip and update the chatbot
def process_clip(prompt, frames, chatbot, id):
    # Print current time in Israel
    israel_tz = pytz.timezone('Asia/Jerusalem')
    start_time = datetime.now(israel_tz).strftime('%H:%M:%S')
    print("[Start]:", start_time, len(frames), id)
    
    # Encode frames into a video clip
    fps = int(len(frames) / LENGTH)
    base64Frames = process_frames(frames, fps)
    frames_count, processing_time, api_response = check_condition(prompt, base64Frames)
    
    if api_response["condition_met"] == True:
        finish_time = datetime.now(israel_tz).strftime('%H:%M:%S')
        # video_clip_path = encode_to_video_fast(frames, fps)
        video_clip_path = clip_video_segment_2(VIDEO_PATH, id*LENGTH, LENGTH)
        chatbot.append(((video_clip_path,), None))
        chatbot.append((f"ID: {id}. Time: {start_time}\nDetails: {api_response.get('details', '')}", None))
    
        frame_paths = []
        for i, base64_frame in enumerate(base64Frames):
            frame_data = base64.b64decode(base64_frame)
            frame_path = f'saved_frames/frame_{uuid.uuid4()}.jpg'
            with open(frame_path, "wb") as f:
                f.write(frame_data)
            frame_paths.append(frame_path)

def process_clip_from_file(prompt, frames, chatbot, fps, video_path, id):
    global stop_capture
    if not stop_capture:
        israel_tz = pytz.timezone('Asia/Jerusalem')
        start_time = datetime.now(israel_tz).strftime('%H:%M:%S')
        print("[Start]:", start_time, len(frames))
        
        frames_to_skip = int(fps)
        base64Frames = process_frames(frames, frames_to_skip)
        frames_count, processing_time, api_response = check_condition(prompt, base64Frames)
        
        result = None
        if api_response and api_response.get("condition_met", False):
            # video_clip_path = encode_to_video_fast(frames, fps)
            video_clip_path = clip_video_segment_2(video_path, id*LENGTH, LENGTH)
            chatbot.append(((video_clip_path,), None))
            chatbot.append((f"Event ID: {id+1}\nDetails: {api_response.get('details', '')}", None))
            yield chatbot
    
    return chatbot

# Function to capture video frames
def analyze_stream(prompt, chatbot):
    global stop_capture
    global base_start_time
    stop_capture = False
    video_start = int(time.time() - base_start_time) % 1800
    
    # stream = "https://streamapi2.eu.loclx.io/video_feed/101"
    stream = VIDEO_PATH
    cap = cv2.VideoCapture(stream or WEBCAM)
    fps = cap.get(cv2.CAP_PROP_FPS)
    cap.set(cv2.CAP_PROP_POS_FRAMES, int(video_start*fps))

    print("Video start", video_start, fps, base_start_time)

    frames = []
    start_time = time.time()
    id = 0
    while not stop_capture:
        ret, frame = cap.read()
        # if not ret:
        #     cap.set(cv2.CAP_PROP_POS_FRAMES, 0)
        frames.append(frame)
        
        # Sample the frames every 5 seconds
        if time.time() - start_time >= LENGTH:
            # Start a new thread for processing the video clip
            Thread(target=process_clip, args=(prompt, frames.copy(), chatbot, id)).start()
            frames = []
            start_time = time.time()
            id=id+1
        yield chatbot

    cap.release()
    return chatbot

def analyze_video_file(prompt, chatbot):
    global stop_capture
    stop_capture = False  # Reset the stop flag when analysis starts
    video_path = VIDEO_PATH
    cap = cv2.VideoCapture(video_path)
    
    # Get video properties
    fps = int(cap.get(cv2.CAP_PROP_FPS))  # Frames per second
    frames_per_chunk = fps * LENGTH  # Number of frames per 5-second chunk
    
    frames = []
    chunk = 0
    
    # Create a thread pool for concurrent processing
    with ThreadPoolExecutor(max_workers=4) as executor:
        futures = []

        while not stop_capture:
            ret, frame = cap.read()
            if not ret:
                cap.set(cv2.CAP_PROP_POS_FRAMES, 0)
            frames.append(frame)
            
            # Split the video into chunks of frames corresponding to 5 seconds
            if len(frames) >= frames_per_chunk:
                futures.append(executor.submit(process_clip_from_file, prompt, frames.copy(), chatbot, fps, video_path, chunk))
                frames = []
                chunk+=1
        
        # If any remaining frames that are less than 5 seconds, process them as a final chunk
        if len(frames) > 0:
            futures.append(executor.submit(process_clip_from_file, prompt, frames.copy(), chatbot, fps, video_path, chunk))
            chunk+=1
        
        cap.release()
        # Yield results as soon as each thread completes
        for future in as_completed(futures):
            result = future.result()
            yield result
    return chatbot


# Function to stop video capture
def stop_capture_func():
    global stop_capture
    stop_capture = True

def get_time():
    global base_start_time
    base_start_time = time.time()
    print("NEW BASE TIME", base_start_time)

# Gradio interface
with gr.Blocks(title="Conntour", fill_height=True) as demo:
    with gr.Row():
        with gr.Column():
            chatbot = gr.Chatbot(label="Events", bubble_full_width=False, avatar_images=AVATARS, height=700)
            prompt = gr.Textbox(label="Enter your prompt alert")
            start_btn = gr.Button("Start")
            stop_btn = gr.Button("Stop")  
            start_btn.click(analyze_stream, inputs=[prompt, chatbot], outputs=[chatbot], queue=True)
            stop_btn.click(stop_capture_func)
    demo.load(get_time, inputs=None, outputs=None)

demo.launch(favicon_path='favicon.ico', auth=(user_name, password))