Spaces:
Sleeping
Sleeping
File size: 15,111 Bytes
861698e 7437080 f234c19 5ee05f0 20fce65 5ee05f0 20fce65 5ee05f0 e77c85e 20fce65 5ee05f0 861698e 74730ff 861698e 66db059 861698e 20df9f9 66db059 861698e afca745 20fce65 4af8daa f234c19 ed2b9ce f234c19 cd0b1ef f234c19 7437080 bc1c940 7437080 1e93edd 478ce87 1e93edd 861698e a72aafd 861698e 1172ef2 861698e 1172ef2 861698e ea3825e 861698e afca745 861698e ad1d1d7 861698e 52d0fa7 ed2b9ce 6f2e077 861698e ad1d1d7 0e01501 861698e 7437080 861698e 7437080 861698e 7437080 f234c19 861698e 3fb14d4 52d0fa7 861698e 4968728 e77c85e c8b6396 8df568e 4968728 8df568e 4968728 8df568e 4968728 8df568e 4968728 8df568e 4968728 8df568e 4968728 afca745 4968728 8df568e 4968728 8df568e 4968728 4e5fd61 4968728 ea3825e 4968728 4e5fd61 4968728 4e5fd61 4968728 861698e 4968728 4e5fd61 4968728 4e5fd61 8df568e 4968728 8df568e 4968728 8df568e 4968728 8df568e 4968728 861698e 4968728 861698e 8df568e c91ed12 861698e 6f2e077 861698e 7437080 861698e 25af94a 861698e c91ed12 861698e 7437080 861698e 29d34bf 861698e 7437080 29d34bf 861698e 20fce65 861698e 20fce65 861698e ef1bbc9 861698e b590546 680dda7 b590546 f3e5d42 861698e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 |
import gradio as gr
import cv2
import time
import openai
import base64
import pytz
import uuid
from threading import Thread
from concurrent.futures import ThreadPoolExecutor, as_completed
from datetime import datetime
import json
import os
from gradio_client import Client, file
import subprocess
import ffmpeg
# Slack integration start
from slack_sdk import WebClient
from slack_sdk.errors import SlackApiError
def send_message_with_file(
title: str, filename: str, message: str, file_path: str
):
global SLACK_MESSAGES_SENT
client = WebClient(token=SLACK_BOT_TOKEN)
try:
if SLACK_MESSAGES_SENT <= 1:
response = client.files_upload_v2(
channel=SLACK_BOT_CHANNEL_ID,
initial_comment=message,
file=file_path,
title=title,
filename=filename,
)
if response.get("ok"):
print("Message with file sent successfully!")
SLACK_MESSAGES_SENT += 1
else:
print("Failed to send message with file:", response)
except SlackApiError as e:
# Handle Slack-specific errors
print(f"Slack API Error: {e.response.get('error')}")
SLACK_BOT_TOKEN = os.getenv("SLACK_BOT_TOKEN")
SLACK_BOT_CHANNEL_ID = os.getenv("SLACK_BOT_CHANNEL_ID")
# Slack integration end
api_key = os.getenv("OPEN_AI_KEY")
user_name = os.getenv("USER_NAME")
password = os.getenv("PASSWORD")
LENGTH = 3
WEBCAM = 0
MARKDOWN = """
# Conntour
"""
AVATARS = (
"https://uqnmqpvwlbpmdvutucia.supabase.co/storage/v1/object/public/test/square_padding.png?t=2024-12-26T10%3A36%3A46.488Z",
"https://media.roboflow.com/spaces/openai-white-logomark.png"
)
# VIDEO_PATH = "https://uqnmqpvwlbpmdvutucia.supabase.co/storage/v1/object/public/live-cameras/long_sf_junction.mp4?t=2025-01-14T10%3A09%3A14.826Z"
VIDEO_PATH = "long_sf_junction.mp4"
# Set your OpenAI API key
openai.api_key = api_key
MODEL="gpt-4o"
client = openai.OpenAI(api_key=api_key)
# Global variable to stop the video capture loop
stop_capture = False
alerts_mode = True
base_start_time = time.time()
SLACK_MESSAGES_SENT = 0
print("base_start_time", base_start_time)
def clip_video_segment_2(input_video_path, start_time, duration):
os.makedirs('videos', exist_ok=True)
output_video_path = f"videos/{uuid.uuid4()}.mp4"
print("clip_video_segment_2.start_time", start_time)
# Use ffmpeg-python to clip the video
try:
(
ffmpeg
.input(input_video_path, ss=start_time) # Seek to start_time
# .output(output_video_path, t=duration, c='copy') # Set the duration
.output(output_video_path, t=duration) # Set the duration
.run(overwrite_output=True)
)
print('input_video_path', input_video_path, output_video_path)
return output_video_path
except ffmpeg.Error as e:
print(f"Error clipping video: {e}")
return None
def clip_video_segment(input_video_path, start_time, duration):
os.makedirs('videos', exist_ok=True)
output_video_path = f"videos/{uuid.uuid4()}.mp4"
subprocess.call([
'ffmpeg', '-y', '-ss', str(start_time), '-i', input_video_path,
'-t', str(duration), '-c', 'copy', output_video_path
])
print('input_video_path', input_video_path, output_video_path)
return output_video_path
def encode_to_video_fast(frames, fps):
os.makedirs('videos', exist_ok=True)
video_clip_path = f"videos/{uuid.uuid4()}.mp4"
# Get frame size
height, width, layers = frames[0].shape
size = (width, height)
# Define the codec and create VideoWriter object
fourcc = cv2.VideoWriter_fourcc(*"mp4v") # You can also try 'XVID', 'MJPG', etc.
out = cv2.VideoWriter(video_clip_path, fourcc, fps, size)
for frame in frames:
out.write(frame)
out.release()
return video_clip_path
# Function to process video frames using GPT-4 API
def process_frames(frames, frames_to_skip = 1):
os.makedirs('saved_frames', exist_ok=True)
curr_frame=0
base64Frames = []
while curr_frame < len(frames) - 1:
_, buffer = cv2.imencode(".jpg", frames[curr_frame])
base64Frames.append(base64.b64encode(buffer).decode("utf-8"))
curr_frame += frames_to_skip
return base64Frames
# Function to check condition using GPT-4 API
def check_condition(prompt, base64Frames):
start_time = time.time()
print('checking condition for frames:', len(base64Frames))
# Save frames as images
messages = [
{"role": "system", "content": """You are analyzing video to check if the user's condition is met.
Please respond with a JSON object in the following format:
{"condition_met": true/false, "details": "optional details or summary. in the summary DON'T mention the words: image, images, frame, or frames. Instead, make it look like you were provided with video input and avoid referring to individual images or frames explicitly."}"""},
{"role": "user", "content": [prompt, *map(lambda x: {"type": "image_url", "image_url": {"url": f'data:image/jpg;base64,{x}', "detail": "low"}}, base64Frames)]}
]
response = client.chat.completions.create(
model="gpt-4o",
messages=messages,
temperature=0,
response_format={ "type": "json_object" }
)
end_time = time.time()
processing_time = end_time - start_time
frames_count = len(base64Frames)
api_response = response.choices[0].message.content
try:
jsonNew = json.loads(api_response)
print('result', response.usage.total_tokens, jsonNew)
return frames_count, processing_time, jsonNew
except:
print('result', response.usage.total_tokens, api_response)
return frames_count, processing_time, api_response
# Function to process video clip and update the chatbot
def process_clip(prompt, frames, chatbot, id):
# Print current time in Israel
israel_tz = pytz.timezone('Asia/Jerusalem')
start_time = datetime.now(israel_tz).strftime('%H:%M:%S')
print("[Start]:", start_time, len(frames), id)
# Encode frames into a video clip
fps = int(len(frames) / LENGTH)
base64Frames = process_frames(frames, fps)
frames_count, processing_time, api_response = check_condition(prompt, base64Frames)
if api_response["condition_met"] == True:
response_details = api_response.get('details', '')
finish_time = datetime.now(israel_tz).strftime('%H:%M:%S')
# video_clip_path = encode_to_video_fast(frames, fps)
print("process_clip id*LENGTH", id*LENGTH)
video_clip_path = clip_video_segment_2(VIDEO_PATH, id*LENGTH, LENGTH)
chatbot.append(((video_clip_path,), None))
chatbot.append((f"ID: {id}. Time: {start_time}\nDetails: {response_details}", None))
try:
message_body = f":warning: *An event for your query has been recorded!* \n*Query:* '{prompt}' \n*Event:* '{response_details}'"
send_message_with_file("Event video file", "conntour_event.mp4", message_body, video_clip_path)
except error:
print("Error sending Slack message:", error)
frame_paths = []
for i, base64_frame in enumerate(base64Frames):
frame_data = base64.b64decode(base64_frame)
frame_path = f'saved_frames/frame_{uuid.uuid4()}.jpg'
with open(frame_path, "wb") as f:
f.write(frame_data)
frame_paths.append(frame_path)
def process_clip_from_file(prompt, frames, chatbot, fps, video_path, id):
global stop_capture
if not stop_capture:
israel_tz = pytz.timezone('Asia/Jerusalem')
start_time = datetime.now(israel_tz).strftime('%H:%M:%S')
print("[Start]:", start_time, len(frames))
frames_to_skip = int(fps)
base64Frames = process_frames(frames, frames_to_skip)
frames_count, processing_time, api_response = check_condition(prompt, base64Frames)
result = None
if api_response and api_response.get("condition_met", False):
# video_clip_path = encode_to_video_fast(frames, fps)
video_clip_path = clip_video_segment_2(video_path, id*LENGTH, LENGTH)
chatbot.append(((video_clip_path,), None))
chatbot.append((f"Event ID: {id+1}\nDetails: {api_response.get('details', '')}", None))
yield chatbot
return chatbot
# Function to capture video frames
def analyze_stream(prompt, chatbot):
global stop_capture
global base_start_time
stop_capture = False
half_hour_in_secs = 1800 # long sf junction video length
extra_frames_because_we_love_gambling_in_casinos = 10
video_start = int(int(time.time() - base_start_time) % half_hour_in_secs) + extra_frames_because_we_love_gambling_in_casinos
# stream = "https://streamapi2.eu.loclx.io/video_feed/101"
stream = VIDEO_PATH
cap = cv2.VideoCapture(stream or WEBCAM)
fps = cap.get(cv2.CAP_PROP_FPS)
cap.set(cv2.CAP_PROP_POS_FRAMES, int(video_start*fps))
# cap.set(cv2.CAP_PROP_POS_FRAMES, int(20 * 24))
print("Video start", video_start, fps, base_start_time)
frames = []
start_time = time.time()
id = int(video_start / LENGTH)
while not stop_capture:
ret, frame = cap.read()
# if not ret:
# cap.set(cv2.CAP_PROP_POS_FRAMES, 0)
frames.append(frame)
# Sample the frames every 5 seconds
if time.time() - start_time >= LENGTH:
# Start a new thread for processing the video clip
Thread(target=process_clip, args=(prompt, frames.copy(), chatbot, id)).start()
frames = []
start_time = time.time()
id=id+1
yield chatbot
cap.release()
return chatbot
# def analyze_stream(prompt, chatbot):
# global stop_capture
# global base_start_time
# stop_capture = False
# extra_frames = 6
# video_start = int(int(time.time() - base_start_time) % 1800)
# stream = VIDEO_PATH
# cap = cv2.VideoCapture(stream or WEBCAM)
# fps = cap.get(cv2.CAP_PROP_FPS)
# if fps <= 0:
# print("[DEBUG]: Could not find FPS")
# # Fallback, in case the FPS is reported as 0 or negative
# fps = 24.0
# # Convert `video_start` (in seconds) to frames
# start_frame = int(video_start * fps)
# print("[DEBUG]: Desired start_frame =", start_frame)
# print("[DEBUG]: Video start, fps, base_start_time =", video_start, fps, base_start_time)
# # Attempt to seek
# # success = cap.set(cv2.CAP_PROP_POS_FRAMES, start_frame)
# for _ in range(start_frame):
# ret, _ = cap.read()
# # Check if seeking was actually successful by reading a frame
# ret, test_frame = cap.read()
# # if not success or not ret:
# # # If seeking failed, fall back to manual skipping
# # print(f"Direct seek to frame {start_frame} failed. Falling back to manual skipping.")
# # # Reset capture to start
# # cap.release()
# # cap = cv2.VideoCapture(stream)
# # # Skip frames manually
# # for _ in range(start_frame):
# # ret, _ = cap.read()
# # if not ret:
# # print("Failed before reaching start_frame (manual skip).")
# # break
# # # We'll use 'test_frame' from the final read below
# # ret, test_frame = cap.read()
# frames = []
# start_time = time.time()
# clip_id = video_start
# print("Starting capture from the current position now.")
# if ret and test_frame is not None:
# # We already read one frame after seeking, so store it
# frames.append(test_frame)
# while not stop_capture:
# ret, frame = cap.read()
# if not ret:
# # You could optionally try restarting if desired
# print("No more frames or read error; stopping.")
# break
# frames.append(frame)
# # Sample the frames every LENGTH seconds
# if (time.time() - start_time) >= LENGTH:
# # Start a new thread for processing the video clip
# print("analyze_stream.clip_id", clip_id)
# Thread(target=process_clip, args=(prompt, frames.copy(), chatbot, clip_id)).start()
# frames = []
# start_time = time.time()
# clip_id += 1
# # Yield to the UI or chatbot loop
# yield chatbot
# cap.release()
# return chatbot
def analyze_video_file(prompt, chatbot):
global stop_capture
stop_capture = False # Reset the stop flag when analysis starts
video_path = VIDEO_PATH
cap = cv2.VideoCapture(video_path)
# Get video properties
fps = int(cap.get(cv2.CAP_PROP_FPS)) # Frames per second
frames_per_chunk = fps * LENGTH # Number of frames per 5-second chunk
frames = []
chunk = 0
# Create a thread pool for concurrent processing
with ThreadPoolExecutor(max_workers=4) as executor:
futures = []
while not stop_capture:
ret, frame = cap.read()
if not ret:
cap.set(cv2.CAP_PROP_POS_FRAMES, 0)
frames.append(frame)
# Split the video into chunks of frames corresponding to 5 seconds
if len(frames) >= frames_per_chunk:
futures.append(executor.submit(process_clip_from_file, prompt, frames.copy(), chatbot, fps, video_path, chunk))
frames = []
chunk+=1
# If any remaining frames that are less than 5 seconds, process them as a final chunk
if len(frames) > 0:
futures.append(executor.submit(process_clip_from_file, prompt, frames.copy(), chatbot, fps, video_path, chunk))
chunk+=1
cap.release()
# Yield results as soon as each thread completes
for future in as_completed(futures):
result = future.result()
yield result
return chatbot
# Function to stop video capture
def stop_capture_func():
global stop_capture
global SLACK_MESSAGES_SENT
stop_capture = True
SLACK_MESSAGES_SENT = 0
def get_time():
global base_start_time
base_start_time = time.time()
print("NEW BASE TIME", base_start_time)
# Gradio interface
with gr.Blocks(title="Conntour", fill_height=True) as demo:
with gr.Row():
with gr.Column():
chatbot = gr.Chatbot(label="Events", bubble_full_width=False, avatar_images=AVATARS, height=700)
prompt = gr.Textbox(label="Enter your prompt alert")
start_btn = gr.Button("Start")
stop_btn = gr.Button("Stop")
start_btn.click(analyze_stream, inputs=[prompt, chatbot], outputs=[chatbot], queue=True)
stop_btn.click(stop_capture_func)
demo.load(get_time, inputs=None, outputs=None)
demo.launch(favicon_path='favicon.ico', auth=(user_name, password)) |