ziv-conntour's picture
Update app.py
bf2ef9d verified
raw
history blame
11.6 kB
import gradio as gr
import cv2
import time
import openai
import base64
import pytz
import uuid
from threading import Thread
from concurrent.futures import ThreadPoolExecutor, as_completed
from datetime import datetime
import json
import os
from gradio_client import Client, file
import subprocess
import ffmpeg
# Slack integration start
from slack_sdk import WebClient
from slack_sdk.errors import SlackApiError
def send_message_with_file(
title: str, filename: str, message: str, file_path: str
):
client = WebClient(token=SLACK_BOT_TOKEN)
try:
response = client.files_upload_v2(
channel=SLACK_BOT_CHANNEL_ID,
initial_comment=message,
file=file_path,
title=title,
filename=filename,
)
if response.get("ok"):
print("Message with file sent successfully!")
else:
print("Failed to send message with file:", response)
except SlackApiError as e:
# Handle Slack-specific errors
print(f"Slack API Error: {e.response.get('error')}")
SLACK_BOT_TOKEN = os.getenv("SLACK_BOT_TOKEN")
SLACK_BOT_CHANNEL_ID = os.getenv("SLACK_BOT_CHANNEL_ID")
# Slack integration end
api_key = os.getenv("OPEN_AI_KEY")
user_name = os.getenv("USER_NAME")
password = os.getenv("PASSWORD")
LENGTH = 3
WEBCAM = 0
MARKDOWN = """
# Conntour
"""
AVATARS = (
"https://uqnmqpvwlbpmdvutucia.supabase.co/storage/v1/object/public/test/square_padding.png?t=2024-12-26T10%3A36%3A46.488Z",
"https://media.roboflow.com/spaces/openai-white-logomark.png"
)
VIDEO_PATH = "https://uqnmqpvwlbpmdvutucia.supabase.co/storage/v1/object/public/live-cameras/long_sf_junction.mp4?t=2025-01-14T10%3A09%3A14.826Z"
# Set your OpenAI API key
openai.api_key = api_key
MODEL="gpt-4o"
client = openai.OpenAI(api_key=api_key)
# Global variable to stop the video capture loop
stop_capture = False
alerts_mode = True
base_start_time = time.time()
print("base_start_time", base_start_time)
def clip_video_segment_2(input_video_path, start_time, duration):
os.makedirs('videos', exist_ok=True)
output_video_path = f"videos/{uuid.uuid4()}.mp4"
# Use ffmpeg-python to clip the video
try:
(
ffmpeg
.input(input_video_path, ss=start_time) # Seek to start_time
.output(output_video_path, t=duration, c='copy') # Set the duration
.run(overwrite_output=True)
)
print('input_video_path', input_video_path, output_video_path)
return output_video_path
except ffmpeg.Error as e:
print(f"Error clipping video: {e}")
return None
def clip_video_segment(input_video_path, start_time, duration):
os.makedirs('videos', exist_ok=True)
output_video_path = f"videos/{uuid.uuid4()}.mp4"
subprocess.call([
'ffmpeg', '-y', '-ss', str(start_time), '-i', input_video_path,
'-t', str(duration), '-c', 'copy', output_video_path
])
print('input_video_path', input_video_path, output_video_path)
return output_video_path
def encode_to_video_fast(frames, fps):
os.makedirs('videos', exist_ok=True)
video_clip_path = f"videos/{uuid.uuid4()}.mp4"
# Get frame size
height, width, layers = frames[0].shape
size = (width, height)
# Define the codec and create VideoWriter object
fourcc = cv2.VideoWriter_fourcc(*"mp4v") # You can also try 'XVID', 'MJPG', etc.
out = cv2.VideoWriter(video_clip_path, fourcc, fps, size)
for frame in frames:
out.write(frame)
out.release()
return video_clip_path
# Function to process video frames using GPT-4 API
def process_frames(frames, frames_to_skip = 1):
os.makedirs('saved_frames', exist_ok=True)
curr_frame=0
base64Frames = []
while curr_frame < len(frames) - 1:
_, buffer = cv2.imencode(".jpg", frames[curr_frame])
base64Frames.append(base64.b64encode(buffer).decode("utf-8"))
curr_frame += frames_to_skip
return base64Frames
# Function to check condition using GPT-4 API
def check_condition(prompt, base64Frames):
start_time = time.time()
print('checking condition for frames:', len(base64Frames))
# Save frames as images
messages = [
{"role": "system", "content": """You are analyzing video to check if the user's condition is met.
Please respond with a JSON object in the following format:
{"condition_met": true/false, "details": "optional details or summary. in the summary DON'T mention the words: image, images, frame, or frames. Instead, make it look like you were provided with video input and avoid referring to individual images or frames explicitly."}"""},
{"role": "user", "content": [prompt, *map(lambda x: {"type": "image_url", "image_url": {"url": f'data:image/jpg;base64,{x}', "detail": "low"}}, base64Frames)]}
]
response = client.chat.completions.create(
model="gpt-4o",
messages=messages,
temperature=0,
response_format={ "type": "json_object" }
)
end_time = time.time()
processing_time = end_time - start_time
frames_count = len(base64Frames)
api_response = response.choices[0].message.content
try:
jsonNew = json.loads(api_response)
print('result', response.usage.total_tokens, jsonNew)
return frames_count, processing_time, jsonNew
except:
print('result', response.usage.total_tokens, api_response)
return frames_count, processing_time, api_response
# Function to process video clip and update the chatbot
def process_clip(prompt, frames, chatbot, id):
# Print current time in Israel
israel_tz = pytz.timezone('Asia/Jerusalem')
start_time = datetime.now(israel_tz).strftime('%H:%M:%S')
print("[Start]:", start_time, len(frames), id)
# Encode frames into a video clip
fps = int(len(frames) / LENGTH)
base64Frames = process_frames(frames, fps)
frames_count, processing_time, api_response = check_condition(prompt, base64Frames)
if api_response["condition_met"] == True:
response_details = api_response.get('details', '')
finish_time = datetime.now(israel_tz).strftime('%H:%M:%S')
# video_clip_path = encode_to_video_fast(frames, fps)
video_clip_path = clip_video_segment_2(VIDEO_PATH, id*LENGTH, LENGTH)
chatbot.append(((video_clip_path,), None))
chatbot.append((f"ID: {id}. Time: {start_time}\nDetails: {response_details}", None))
# message_body = f":warning: *An event for your query has been recorded!* \n*Query:* '{prompt}' \n*Event:* '{response_details}'"
# send_message_with_file("Event video file", "conntour_event.mp4", message_body, video_clip_path)
frame_paths = []
for i, base64_frame in enumerate(base64Frames):
frame_data = base64.b64decode(base64_frame)
frame_path = f'saved_frames/frame_{uuid.uuid4()}.jpg'
with open(frame_path, "wb") as f:
f.write(frame_data)
frame_paths.append(frame_path)
def process_clip_from_file(prompt, frames, chatbot, fps, video_path, id):
global stop_capture
if not stop_capture:
israel_tz = pytz.timezone('Asia/Jerusalem')
start_time = datetime.now(israel_tz).strftime('%H:%M:%S')
print("[Start]:", start_time, len(frames))
frames_to_skip = int(fps)
base64Frames = process_frames(frames, frames_to_skip)
frames_count, processing_time, api_response = check_condition(prompt, base64Frames)
result = None
if api_response and api_response.get("condition_met", False):
# video_clip_path = encode_to_video_fast(frames, fps)
video_clip_path = clip_video_segment_2(video_path, id*LENGTH, LENGTH)
chatbot.append(((video_clip_path,), None))
chatbot.append((f"Event ID: {id+1}\nDetails: {api_response.get('details', '')}", None))
yield chatbot
return chatbot
# Function to capture video frames
def analyze_stream(prompt, chatbot):
global stop_capture
global base_start_time
stop_capture = False
video_start = int(time.time() - base_start_time) % 1800
# stream = "https://streamapi2.eu.loclx.io/video_feed/101"
stream = VIDEO_PATH
cap = cv2.VideoCapture(stream or WEBCAM)
fps = cap.get(cv2.CAP_PROP_FPS)
# cap.set(cv2.CAP_PROP_POS_FRAMES, int(video_start*fps))
cap.set(cv2.CAP_PROP_POS_FRAMES, int(20 * 24))
print("Video start", video_start, fps, base_start_time)
frames = []
start_time = time.time()
id = 0
while not stop_capture:
ret, frame = cap.read()
# if not ret:
# cap.set(cv2.CAP_PROP_POS_FRAMES, 0)
frames.append(frame)
# Sample the frames every 5 seconds
if time.time() - start_time >= LENGTH:
# Start a new thread for processing the video clip
Thread(target=process_clip, args=(prompt, frames.copy(), chatbot, id)).start()
frames = []
start_time = time.time()
id=id+1
yield chatbot
cap.release()
return chatbot
def analyze_video_file(prompt, chatbot):
global stop_capture
stop_capture = False # Reset the stop flag when analysis starts
video_path = VIDEO_PATH
cap = cv2.VideoCapture(video_path)
# Get video properties
fps = int(cap.get(cv2.CAP_PROP_FPS)) # Frames per second
frames_per_chunk = fps * LENGTH # Number of frames per 5-second chunk
frames = []
chunk = 0
# Create a thread pool for concurrent processing
with ThreadPoolExecutor(max_workers=4) as executor:
futures = []
while not stop_capture:
ret, frame = cap.read()
if not ret:
cap.set(cv2.CAP_PROP_POS_FRAMES, 0)
frames.append(frame)
# Split the video into chunks of frames corresponding to 5 seconds
if len(frames) >= frames_per_chunk:
futures.append(executor.submit(process_clip_from_file, prompt, frames.copy(), chatbot, fps, video_path, chunk))
frames = []
chunk+=1
# If any remaining frames that are less than 5 seconds, process them as a final chunk
if len(frames) > 0:
futures.append(executor.submit(process_clip_from_file, prompt, frames.copy(), chatbot, fps, video_path, chunk))
chunk+=1
cap.release()
# Yield results as soon as each thread completes
for future in as_completed(futures):
result = future.result()
yield result
return chatbot
# Function to stop video capture
def stop_capture_func():
global stop_capture
stop_capture = True
def get_time():
global base_start_time
base_start_time = time.time()
print("NEW BASE TIME", base_start_time)
# Gradio interface
with gr.Blocks(title="Conntour", fill_height=True) as demo:
with gr.Row():
with gr.Column():
chatbot = gr.Chatbot(label="Events", bubble_full_width=False, avatar_images=AVATARS, height=700)
prompt = gr.Textbox(label="Enter your prompt alert")
start_btn = gr.Button("Start")
stop_btn = gr.Button("Stop")
start_btn.click(analyze_stream, inputs=[prompt, chatbot], outputs=[chatbot], queue=True)
stop_btn.click(stop_capture_func)
demo.load(get_time, inputs=None, outputs=None)
demo.launch(favicon_path='favicon.ico', auth=(user_name, password))