|
from flask import Flask, request, jsonify |
|
from sklearn.tree import DecisionTreeClassifier |
|
import numpy as np |
|
|
|
app = Flask(__name__) |
|
|
|
|
|
|
|
example_data = [ |
|
[0, 0, 1, 1], |
|
[1, 1, 0, 0], |
|
[1, 0, 1, 0], |
|
[0, 1, 0, 1] |
|
] |
|
|
|
|
|
example_labels = [1, 0, 1, 0] |
|
|
|
|
|
model = DecisionTreeClassifier() |
|
model.fit(example_data, example_labels) |
|
|
|
@app.route('/analyze', methods=['POST']) |
|
def analyze(): |
|
data = request.json |
|
response = [data['phishing'], data['ransomware'], data['ddos'], data['malware']] |
|
prediction = model.predict([response]) |
|
return jsonify({'prediction': int(prediction[0])}) |
|
|
|
if __name__ == '__main__': |
|
app.run(debug=True) |