import pandas as pd from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error, r2_score from sklearn.compose import ColumnTransformer from sklearn.preprocessing import OneHotEncoder, StandardScaler from sklearn.pipeline import Pipeline import streamlit as st df = pd.read_excel("cars.xls") x = df.drop('Price', axis=1) y = df['Price'] x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42) preprocess = ColumnTransformer( transformers=[ ('num', StandardScaler(), ['Mileage', 'Cylinder', 'Liter', 'Doors']), ('cat', OneHotEncoder(), ['Make', 'Model', 'Trim', 'Type', 'Cruise', 'Sound', 'Leather']) ] ) my_model = LinearRegression() pipe = Pipeline(steps=[('preprocessor', preprocess), ('model', my_model)]) pipe.fit(x_train, y_train) y_pred = pipe.predict(x_test) print('RMSE', mean_squared_error(y_test, y_pred) ** 0.5) print('R2', r2_score(y_test, y_pred)) st.title("II. El Araba Fiyatı Tahmin:red_car: @aysel_olcer") st.write('Arabanın özelliklerini seçiniz') make = st.selectbox('Marka', df['Make'].unique()) model = st.selectbox('Model', df[df['Make'] == make]['Model'].unique()) trim = st.selectbox('Trim', df[(df['Make'] == make) & (df['Model'] == model)]['Trim'].unique()) mileage = st.number_input('Kilometre', 100, 200000) car_type = st.selectbox('Araç Tipi', df['Type'].unique()) cylinder = st.selectbox('Silindir', df['Cylinder'].unique()) liter = st.number_input('Yakıt Hacmi', 1, 10) doors = st.selectbox('Kapı sayısı', df['Doors'].unique()) cruise = st.radio('Hız Sbt.', [True, False]) sound = st.radio('Ses Sistemi.', [True, False]) leather = st.radio('Deri döşeme.', [True, False]) def price(make, model, trim, mileage, car_type, cylinder, liter, doors, cruise, sound, leather): input_data = pd.DataFrame({ 'Make': [make], 'Model': [model], 'Trim': [trim], 'Mileage': [mileage], 'Type': [car_type], 'Cylinder': [cylinder], 'Liter': [liter], 'Doors': [doors], 'Cruise': [cruise], 'Sound': [sound], 'Leather': [leather] }) prediction = pipe.predict(input_data)[0] return prediction if st.button('Tahmin Et'): pred = price(make, model, trim, mileage, car_type, cylinder, liter, doors, cruise, sound, leather) st.write('Fiyat:red_car: $', round(pred, 2))