Back to what works
Browse filesMAKE SURE AND ADD PINECONE RAG CORRECTION SOON
app.py
CHANGED
@@ -61,24 +61,9 @@ def generate_response(question):
|
|
61 |
recent_messages = st.session_state.messages[-5:] # Get last 5 messages
|
62 |
conversation_context = "\n".join([f"{m['role']}: {m['content']}" for m in recent_messages])
|
63 |
|
64 |
-
#
|
65 |
-
query_embedding = openai.Embedding.create(
|
66 |
-
input=question,
|
67 |
-
model="text-embedding-ada-002"
|
68 |
-
)['data'][0]['embedding']
|
69 |
-
|
70 |
-
# Query Pinecone for the top 3 relevant documents
|
71 |
-
query_response = index.query(vector=query_embedding, top_k=3, include_metadata=True)
|
72 |
-
retrieved_docs = [match['metadata']['text'] for match in query_response['matches'] if match.get('metadata')]
|
73 |
-
docs_context = "\n".join(retrieved_docs)
|
74 |
-
|
75 |
-
# Combine conversation context, retrieved document context, and the current question with the master prompt
|
76 |
full_prompt = f"""Previous conversation:
|
77 |
{conversation_context}
|
78 |
-
|
79 |
-
Relevant documents:
|
80 |
-
{docs_context}
|
81 |
-
|
82 |
Current question: {question}
|
83 |
{master_prompt}"""
|
84 |
|
|
|
61 |
recent_messages = st.session_state.messages[-5:] # Get last 5 messages
|
62 |
conversation_context = "\n".join([f"{m['role']}: {m['content']}" for m in recent_messages])
|
63 |
|
64 |
+
# Combine context with current question
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
full_prompt = f"""Previous conversation:
|
66 |
{conversation_context}
|
|
|
|
|
|
|
|
|
67 |
Current question: {question}
|
68 |
{master_prompt}"""
|
69 |
|