CoralLeiCN commited on
Commit
ba1bd1e
·
1 Parent(s): eed2d7f

Add chess_move tool and update imports in agents and tools modules

Browse files
Files changed (2) hide show
  1. agent/agents.py +2 -0
  2. agent/tools.py +9 -1
agent/agents.py CHANGED
@@ -15,6 +15,7 @@ from agent.tools import (
15
  TranscribeYoutubeVideo,
16
  UnderstandImageBytes,
17
  WikipediaSearchTool,
 
18
  )
19
  from agent.utils import gemini_client, gemini_model_liteLLM
20
 
@@ -79,6 +80,7 @@ class BasicAgent:
79
  understand_image_bytes,
80
  code_execution_tool,
81
  wiki_retriever,
 
82
  ],
83
  model=model,
84
  additional_authorized_imports=["pandas"],
 
15
  TranscribeYoutubeVideo,
16
  UnderstandImageBytes,
17
  WikipediaSearchTool,
18
+ chess_move,
19
  )
20
  from agent.utils import gemini_client, gemini_model_liteLLM
21
 
 
80
  understand_image_bytes,
81
  code_execution_tool,
82
  wiki_retriever,
83
+ chess_move,
84
  ],
85
  model=model,
86
  additional_authorized_imports=["pandas"],
agent/tools.py CHANGED
@@ -8,6 +8,14 @@ from markdownify import markdownify as md
8
  from PIL import Image
9
  from smolagents import Tool
10
 
 
 
 
 
 
 
 
 
11
 
12
  class WikipediaSearchTool(Tool):
13
  name = "wikipedia_search"
@@ -107,7 +115,7 @@ class UnderstandImageBytes(Tool):
107
  prompt = "Analyze this image and provide a description of its content."
108
 
109
  response = client.models.generate_content(
110
- model="gemini-2.5-flash-preview-05-20",
111
  contents=[
112
  f"{prompt} And answer the question accurately based on the visual information in the image. question: {question} ",
113
  types.Part.from_bytes(
 
8
  from PIL import Image
9
  from smolagents import Tool
10
 
11
+ from smolagents import Tool
12
+
13
+ chess_move = Tool.from_space(
14
+ "Agents-MCP-Hackathon/chess-mcp-server",
15
+ name="chess_server",
16
+ description="Find the best move for chess",
17
+ api_name="/predict_2" # top moves
18
+ )
19
 
20
  class WikipediaSearchTool(Tool):
21
  name = "wikipedia_search"
 
115
  prompt = "Analyze this image and provide a description of its content."
116
 
117
  response = client.models.generate_content(
118
+ model="gemini-2.5-pro",
119
  contents=[
120
  f"{prompt} And answer the question accurately based on the visual information in the image. question: {question} ",
121
  types.Part.from_bytes(