Spaces:
Runtime error
Runtime error
Delete gradio_show.ipynb
Browse files- gradio_show.ipynb +0 -1248
gradio_show.ipynb
DELETED
@@ -1,1248 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"cells": [
|
3 |
-
{
|
4 |
-
"cell_type": "code",
|
5 |
-
"execution_count": 18,
|
6 |
-
"id": "bbac0476",
|
7 |
-
"metadata": {},
|
8 |
-
"outputs": [
|
9 |
-
{
|
10 |
-
"name": "stdout",
|
11 |
-
"output_type": "stream",
|
12 |
-
"text": [
|
13 |
-
"The gradio extension is already loaded. To reload it, use:\n",
|
14 |
-
" %reload_ext gradio\n"
|
15 |
-
]
|
16 |
-
}
|
17 |
-
],
|
18 |
-
"source": [
|
19 |
-
"%load_ext gradio"
|
20 |
-
]
|
21 |
-
},
|
22 |
-
{
|
23 |
-
"cell_type": "code",
|
24 |
-
"execution_count": null,
|
25 |
-
"id": "a83f8fbf",
|
26 |
-
"metadata": {},
|
27 |
-
"outputs": [],
|
28 |
-
"source": [
|
29 |
-
"%%blocks\n",
|
30 |
-
"import gradio as gr\n",
|
31 |
-
"from llama_cpp import Llama\n",
|
32 |
-
"import llama_cpp\n",
|
33 |
-
"from langchain.callbacks.manager import CallbackManager\n",
|
34 |
-
"from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler\n",
|
35 |
-
"\n",
|
36 |
-
"\n",
|
37 |
-
"llm = Llama(\n",
|
38 |
-
" model_path=r\"C:\\Users\\user\\breeze-7b-instruct-v1_0-q4_k_m.gguf\",\n",
|
39 |
-
" n_gpu_layers=100,\n",
|
40 |
-
" n_batch=512,\n",
|
41 |
-
" n_ctx=3000,\n",
|
42 |
-
" f16_kv=True,\n",
|
43 |
-
" callback_manager=CallbackManager([StreamingStdOutCallbackHandler()]),\n",
|
44 |
-
" verbose=False,\n",
|
45 |
-
")\n",
|
46 |
-
"\n",
|
47 |
-
"with gr.Blocks() as demo:\n",
|
48 |
-
" name=\"cora\"\n",
|
49 |
-
" gr.Markdown(f\"# Greetings {name}!\")\n",
|
50 |
-
" inp = gr.Textbox()\n",
|
51 |
-
" out = gr.Textbox()\n",
|
52 |
-
"\n",
|
53 |
-
" inp.change(fn=lambda x: x, inputs=inp, outputs=out)\n"
|
54 |
-
]
|
55 |
-
},
|
56 |
-
{
|
57 |
-
"cell_type": "code",
|
58 |
-
"execution_count": null,
|
59 |
-
"id": "c51b8778",
|
60 |
-
"metadata": {
|
61 |
-
"scrolled": true
|
62 |
-
},
|
63 |
-
"outputs": [],
|
64 |
-
"source": [
|
65 |
-
"import gradio as gr\n",
|
66 |
-
"\n",
|
67 |
-
"# 定義處理函數\n",
|
68 |
-
"def process_user_input(message):\n",
|
69 |
-
" return message\n",
|
70 |
-
"\n",
|
71 |
-
"# 定義主函數\n",
|
72 |
-
"def main_pipeline(message, history):\n",
|
73 |
-
" # 呼叫處理函數\n",
|
74 |
-
" response = process_user_input(message)\n",
|
75 |
-
" # 將輸出加入歷史訊息\n",
|
76 |
-
" return response\n",
|
77 |
-
"\n",
|
78 |
-
"# 創建 Gradio 介面\n",
|
79 |
-
"chat_interface = gr.Interface(fn=main_pipeline,inputs=\"text\",outputs=\"text\",live=True)\n",
|
80 |
-
"\n",
|
81 |
-
"# 啟動應用程式\n",
|
82 |
-
"if __name__ == \"__main__\":\n",
|
83 |
-
" \n",
|
84 |
-
" chat_interface.launch()\n"
|
85 |
-
]
|
86 |
-
},
|
87 |
-
{
|
88 |
-
"cell_type": "code",
|
89 |
-
"execution_count": null,
|
90 |
-
"id": "3ff36b6c-1b1d-4703-96f7-65642fae5722",
|
91 |
-
"metadata": {},
|
92 |
-
"outputs": [],
|
93 |
-
"source": [
|
94 |
-
"import gradio as gr\n",
|
95 |
-
"\n",
|
96 |
-
"def process_user_input(message):\n",
|
97 |
-
" return message\n",
|
98 |
-
"\n",
|
99 |
-
"def main_pipeline(message, history):\n",
|
100 |
-
" response = process_user_input(message)\n",
|
101 |
-
" return response\n",
|
102 |
-
"\n",
|
103 |
-
"chat_interface = gr.ChatInterface(main_pipeline, type=\"messages\")\n",
|
104 |
-
"\n",
|
105 |
-
"if __name__ == \"__main__\":\n",
|
106 |
-
" chat_interface.launch()"
|
107 |
-
]
|
108 |
-
},
|
109 |
-
{
|
110 |
-
"cell_type": "code",
|
111 |
-
"execution_count": null,
|
112 |
-
"id": "ee5766db-3500-4082-a634-2b1cdad5859b",
|
113 |
-
"metadata": {},
|
114 |
-
"outputs": [],
|
115 |
-
"source": []
|
116 |
-
},
|
117 |
-
{
|
118 |
-
"cell_type": "code",
|
119 |
-
"execution_count": null,
|
120 |
-
"id": "4d1d8fe7",
|
121 |
-
"metadata": {},
|
122 |
-
"outputs": [],
|
123 |
-
"source": [
|
124 |
-
"import gradio as gr\n",
|
125 |
-
"from llama_cpp import Llama\n",
|
126 |
-
"from langchain_community.llms import LlamaCpp\n",
|
127 |
-
"from langchain.prompts import PromptTemplate\n",
|
128 |
-
"import llama_cpp\n",
|
129 |
-
"from langchain.callbacks.manager import CallbackManager\n",
|
130 |
-
"from sentence_transformers import SentenceTransformer\n",
|
131 |
-
"from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler\n",
|
132 |
-
"import numpy as np\n",
|
133 |
-
"import pandas as pd\n",
|
134 |
-
"import re\n",
|
135 |
-
"import os\n",
|
136 |
-
"from sklearn.metrics.pairwise import cosine_similarity\n",
|
137 |
-
"\n",
|
138 |
-
"# 定義輔助函式\n",
|
139 |
-
"def process_user_input(message):\n",
|
140 |
-
" return message\n",
|
141 |
-
"\n",
|
142 |
-
"# # 假設 PromptTemplate 和 invoke_with_temperature 已正確定義\n",
|
143 |
-
"# user_mental_state4 = PromptTemplate(\n",
|
144 |
-
"# input_variables=[\"input\"],\n",
|
145 |
-
"# template=\"\"\"...\"\"\"\n",
|
146 |
-
"# )\n",
|
147 |
-
" \n",
|
148 |
-
"# df_user = pd.DataFrame(columns=[\"輸入內容\", \"形容詞1\", \"形容詞2\", \"形容詞3\", \"角色1\", \"角色2\", \"角色3\"])\n",
|
149 |
-
"# prompt_value1 = user_mental_state4.invoke({\"input\": message})\n",
|
150 |
-
"# string = invoke_with_temperature(prompt_value1)\n",
|
151 |
-
"# adjectives = [adj.strip() for adj in re.split('[,、,]', string)]\n",
|
152 |
-
"# index = len(df_user)\n",
|
153 |
-
"# df_user.loc[index, '輸入內容'] = message\n",
|
154 |
-
"# if len(adjectives) == 3:\n",
|
155 |
-
"# df_user.loc[index, '形容詞1'] = adjectives[0]\n",
|
156 |
-
"# df_user.loc[index, '形容詞2'] = adjectives[1]\n",
|
157 |
-
"# df_user.loc[index, '形容詞3'] = adjectives[2]\n",
|
158 |
-
"# df_user.to_excel(\"user_gradio系統.xlsx\")\n",
|
159 |
-
"# return message\n",
|
160 |
-
"\n",
|
161 |
-
"# 主邏輯\n",
|
162 |
-
"def main_pipeline(message, history):\n",
|
163 |
-
" df_user = process_user_input(message)\n",
|
164 |
-
" return df_user\n",
|
165 |
-
"\n",
|
166 |
-
"demo=gr.ChatInterface(main_pipeline)\n",
|
167 |
-
"\n",
|
168 |
-
"# 主程式進入點\n",
|
169 |
-
"if __name__ == \"__main__\":\n",
|
170 |
-
" \n",
|
171 |
-
" demo.launch()\n",
|
172 |
-
" \n",
|
173 |
-
"# import gradio as gr\n",
|
174 |
-
"\n",
|
175 |
-
"# # 定義處理函數\n",
|
176 |
-
"# def process_user_input(message):\n",
|
177 |
-
"# return message\n",
|
178 |
-
"\n",
|
179 |
-
"# # 定義主函數\n",
|
180 |
-
"# def main_pipeline(message, history):\n",
|
181 |
-
"# # 呼叫處理函數\n",
|
182 |
-
"# response = process_user_input(message)\n",
|
183 |
-
"# # 將輸出加入歷史訊息\n",
|
184 |
-
"# return response\n",
|
185 |
-
"\n",
|
186 |
-
"# # 創建 Gradio 介面\n",
|
187 |
-
"# chat_interface = gr.ChatInterface(main_pipeline)\n",
|
188 |
-
"\n",
|
189 |
-
"# # 啟動應用程式\n",
|
190 |
-
"# if __name__ == \"__main__\":\n",
|
191 |
-
"# chat_interface.launch()\n",
|
192 |
-
" "
|
193 |
-
]
|
194 |
-
},
|
195 |
-
{
|
196 |
-
"cell_type": "code",
|
197 |
-
"execution_count": 4,
|
198 |
-
"id": "4df2a74d",
|
199 |
-
"metadata": {},
|
200 |
-
"outputs": [
|
201 |
-
{
|
202 |
-
"name": "stdout",
|
203 |
-
"output_type": "stream",
|
204 |
-
"text": [
|
205 |
-
"WARNING:tensorflow:From C:\\Users\\user\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\tf_keras\\src\\losses.py:2976: The name tf.losses.sparse_softmax_cross_entropy is deprecated. Please use tf.compat.v1.losses.sparse_softmax_cross_entropy instead.\n",
|
206 |
-
"\n",
|
207 |
-
"Running on local URL: http://127.0.0.1:7864\n",
|
208 |
-
"\n",
|
209 |
-
"To create a public link, set `share=True` in `launch()`.\n"
|
210 |
-
]
|
211 |
-
},
|
212 |
-
{
|
213 |
-
"data": {
|
214 |
-
"text/html": [
|
215 |
-
"<div><iframe src=\"http://127.0.0.1:7864/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
216 |
-
],
|
217 |
-
"text/plain": [
|
218 |
-
"<IPython.core.display.HTML object>"
|
219 |
-
]
|
220 |
-
},
|
221 |
-
"metadata": {},
|
222 |
-
"output_type": "display_data"
|
223 |
-
},
|
224 |
-
{
|
225 |
-
"name": "stderr",
|
226 |
-
"output_type": "stream",
|
227 |
-
"text": [
|
228 |
-
"C:\\Users\\user\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\gradio\\analytics.py:106: UserWarning: IMPORTANT: You are using gradio version 4.44.0, however version 4.44.1 is available, please upgrade. \n",
|
229 |
-
"--------\n",
|
230 |
-
" warnings.warn(\n",
|
231 |
-
"Traceback (most recent call last):\n",
|
232 |
-
" File \"C:\\Users\\user\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\gradio\\queueing.py\", line 536, in process_events\n",
|
233 |
-
" response = await route_utils.call_process_api(\n",
|
234 |
-
" File \"C:\\Users\\user\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\gradio\\route_utils.py\", line 322, in call_process_api\n",
|
235 |
-
" output = await app.get_blocks().process_api(\n",
|
236 |
-
" File \"C:\\Users\\user\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\gradio\\blocks.py\", line 1935, in process_api\n",
|
237 |
-
" result = await self.call_function(\n",
|
238 |
-
" File \"C:\\Users\\user\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\gradio\\blocks.py\", line 1518, in call_function\n",
|
239 |
-
" prediction = await fn(*processed_input)\n",
|
240 |
-
" File \"C:\\Users\\user\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\gradio\\utils.py\", line 793, in async_wrapper\n",
|
241 |
-
" response = await f(*args, **kwargs)\n",
|
242 |
-
" File \"C:\\Users\\user\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\gradio\\chat_interface.py\", line 623, in _submit_fn\n",
|
243 |
-
" response = await anyio.to_thread.run_sync(\n",
|
244 |
-
" File \"C:\\Users\\user\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\anyio\\to_thread.py\", line 56, in run_sync\n",
|
245 |
-
" return await get_async_backend().run_sync_in_worker_thread(\n",
|
246 |
-
" File \"C:\\Users\\user\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\anyio\\_backends\\_asyncio.py\", line 2441, in run_sync_in_worker_thread\n",
|
247 |
-
" return await future\n",
|
248 |
-
" File \"C:\\Users\\user\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\anyio\\_backends\\_asyncio.py\", line 943, in run\n",
|
249 |
-
" result = context.run(func, *args)\n",
|
250 |
-
" File \"C:\\Users\\user\\AppData\\Local\\Temp\\ipykernel_17468\\2638884024.py\", line 229, in main_pipeline\n",
|
251 |
-
" df_filter=filter(sorted_df)\n",
|
252 |
-
" File \"C:\\Users\\user\\AppData\\Local\\Temp\\ipykernel_17468\\2638884024.py\", line 162, in filter\n",
|
253 |
-
" p=len(df_user)-1\n",
|
254 |
-
"NameError: name 'df_user' is not defined\n"
|
255 |
-
]
|
256 |
-
}
|
257 |
-
],
|
258 |
-
"source": [
|
259 |
-
"import gradio as gr\n",
|
260 |
-
"from llama_cpp import Llama\n",
|
261 |
-
"from langchain_community.llms import LlamaCpp\n",
|
262 |
-
"from langchain.prompts import PromptTemplate\n",
|
263 |
-
"import llama_cpp\n",
|
264 |
-
"from langchain.callbacks.manager import CallbackManager\n",
|
265 |
-
"from sentence_transformers import SentenceTransformer\n",
|
266 |
-
"from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler\n",
|
267 |
-
"import numpy as np\n",
|
268 |
-
"import pandas as pd\n",
|
269 |
-
"import re\n",
|
270 |
-
"import os\n",
|
271 |
-
"from sklearn.metrics.pairwise import cosine_similarity\n",
|
272 |
-
"\n",
|
273 |
-
"model = SentenceTransformer('sentence-transformers/paraphrase-multilingual-mpnet-base-v2',device='cpu')\n",
|
274 |
-
"\n",
|
275 |
-
"# llm = LlamaCpp(\n",
|
276 |
-
"# model_path=r\"C:\\Users\\Cora\\.cache\\lm-studio\\models\\YC-Chen\\Breeze-7B-Instruct-v1_0-GGUF\\breeze-7b-instruct-v1_0-q4_k_m.gguf\",\n",
|
277 |
-
"# n_gpu_layers=100,\n",
|
278 |
-
"# n_batch=512,\n",
|
279 |
-
"# n_ctx=3000,\n",
|
280 |
-
"# f16_kv=True,\n",
|
281 |
-
"# callback_manager=CallbackManager([StreamingStdOutCallbackHandler()]),\n",
|
282 |
-
"# verbose=False,\n",
|
283 |
-
"# )\n",
|
284 |
-
"\n",
|
285 |
-
"llm = LlamaCpp(\n",
|
286 |
-
" model_path=r\"C:\\Users\\user\\breeze-7b-instruct-v1_0-q4_k_m.gguf\",\n",
|
287 |
-
" n_gpu_layers=100,\n",
|
288 |
-
" n_batch=512,\n",
|
289 |
-
" n_ctx=3000,\n",
|
290 |
-
" f16_kv=True,\n",
|
291 |
-
" callback_manager=CallbackManager([StreamingStdOutCallbackHandler()]),\n",
|
292 |
-
" verbose=False,\n",
|
293 |
-
")\n",
|
294 |
-
"\n",
|
295 |
-
"embedd_bk=pd.read_pickle(r\"C:\\Users\\user\\推薦系統實作\\bk_description1_角色形容詞_677.pkl\")\n",
|
296 |
-
"df_bk=pd.read_excel(r\"C:\\Users\\user\\推薦系統實作\\bk_description1_角色形容詞.xlsx\")\n",
|
297 |
-
"\n",
|
298 |
-
"def invoke_with_temperature(prompt, temperature=0.4):\n",
|
299 |
-
" return llm.invoke(prompt, temperature=temperature)\n",
|
300 |
-
"\n",
|
301 |
-
"def process_user_input(message):\n",
|
302 |
-
" user_mental_state4= PromptTemplate(\n",
|
303 |
-
" input_variables=[\"input\"],\n",
|
304 |
-
" template=\"\"\"[INST]<<SYS>>你是一位具有同理心的專業心理諮商師,沒有性別歧視,你可以客觀的根據談話內容的描述,判斷說話的人的心理困擾<</SYS>> \n",
|
305 |
-
" 請根據{input}描述三個最有可能心理困擾,輸出只包含三個心理困擾,回答格式只採用CSV格式,分隔符號使用逗號,參考以下範例:名詞1,名詞2,名詞3。[/INST]\"\"\"\n",
|
306 |
-
" )\n",
|
307 |
-
" \n",
|
308 |
-
" user_character= PromptTemplate(\n",
|
309 |
-
" input_variables=[\"input\"],\n",
|
310 |
-
" template=\"\"\"[INST]<<SYS>>你是一位具有同理心的專業心理諮商師,沒有性別歧視,你可以客觀的根據談話內容的描述,判斷說話的大學生,在生活中的多重角色身分<</SYS>> \n",
|
311 |
-
" 請你根據談話內容{input},客觀的判斷說話的大學生,在談話內容中的角色,以及他生活中其他角色的身分,提供三個最有可能的角色身分名詞,\n",
|
312 |
-
" 輸出只包含三個身分名詞,回答格式只採用CSV格式,分隔符號使用逗號,參考以下範例:名詞1,名詞2,名詞3。[/INST]\"\"\"\n",
|
313 |
-
" )\n",
|
314 |
-
" \n",
|
315 |
-
"\n",
|
316 |
-
" df_user=pd.DataFrame(columns=[\"輸入內容\",\"形容詞1\", \"形容詞2\", \"形容詞3\", \"角色1\", \"角色2\", \"角色3\"])\n",
|
317 |
-
" #df_user_record=pd.read_excel(r\"C:\\Users\\Cora\\推薦系統實作\\gradio系統歷史紀錄.xlsx\")\n",
|
318 |
-
" \n",
|
319 |
-
"\n",
|
320 |
-
" prompt_value1=user_mental_state4.invoke({\"input\":message})\n",
|
321 |
-
" string=invoke_with_temperature(prompt_value1)\n",
|
322 |
-
" #print(\"\\n\")\n",
|
323 |
-
"\n",
|
324 |
-
" # 將字符串分割為名詞\n",
|
325 |
-
" adjectives = [adj.strip() for adj in re.split('[,、,]', string)]\n",
|
326 |
-
" \n",
|
327 |
-
" index=len(df_user)\n",
|
328 |
-
" df_user.loc[index, '輸入內容'] = message\n",
|
329 |
-
"\n",
|
330 |
-
" # 確保形容詞數量符合欄位數量\n",
|
331 |
-
" if len(adjectives) == 3:\n",
|
332 |
-
" df_user.loc[index, '形容詞1'] = adjectives[0]\n",
|
333 |
-
" df_user.loc[index, '形容詞2'] = adjectives[1]\n",
|
334 |
-
" df_user.loc[index, '形容詞3'] = adjectives[2]\n",
|
335 |
-
" df_user.to_excel(\"user_gradio系統.xlsx\")\n",
|
336 |
-
" return df_user\n",
|
337 |
-
"\n",
|
338 |
-
"def embedd_df_user(df_user):\n",
|
339 |
-
" \n",
|
340 |
-
" columns_to_encode=df_user.loc[:,[\"形容詞1\", \"形容詞2\", \"形容詞3\"]]\n",
|
341 |
-
"\n",
|
342 |
-
" # 初始化一個空的 DataFrame,用來存儲向量化結果\n",
|
343 |
-
" embedd_user=df_user[[\"輸入內容\"]]\n",
|
344 |
-
" #user_em= user_em.assign(形容詞1=None, 形容詞2=None, 形容詞3=None,角色1=None,角色2=None,角色3=None)\n",
|
345 |
-
" embedd_user= embedd_user.assign(形容詞1=None, 形容詞2=None, 形容詞3=None)\n",
|
346 |
-
" \n",
|
347 |
-
"\n",
|
348 |
-
" # 遍歷每一個單元格,將結果存入新的 DataFrame 中\n",
|
349 |
-
" i=len(df_user)-1\n",
|
350 |
-
" for col in columns_to_encode:\n",
|
351 |
-
" #print(i,col)\n",
|
352 |
-
" # 將每個單元格的內容進行向量化\n",
|
353 |
-
" embedd_user.at[i, col] = model.encode(df_user.at[i, col]) \n",
|
354 |
-
" \n",
|
355 |
-
" embedd_user.to_pickle(r\"C:\\Users\\user\\推薦系統實作\\user_gradio系統.pkl\")\n",
|
356 |
-
" \n",
|
357 |
-
" return embedd_user\n",
|
358 |
-
"\n",
|
359 |
-
"def top_n_books_by_average(df, n=3):\n",
|
360 |
-
" \n",
|
361 |
-
" # 根据 `average` 列降序排序\n",
|
362 |
-
" sorted_df = df.sort_values(by='average', ascending=False)\n",
|
363 |
-
" \n",
|
364 |
-
" # 选择前 N 行\n",
|
365 |
-
" top_n_df = sorted_df.head(n)\n",
|
366 |
-
" \n",
|
367 |
-
" # 提取书名列\n",
|
368 |
-
" top_books = top_n_df['書名'].tolist()\n",
|
369 |
-
" \n",
|
370 |
-
" return top_books,sorted_df\n",
|
371 |
-
"\n",
|
372 |
-
"def similarity(embedd_user,embedd_bk,df_bk):\n",
|
373 |
-
" df_similarity= pd.DataFrame(df_bk[['書名',\"內容簡介\",\"URL\",\"形容詞1\", \"形容詞2\", \"形容詞3\", '角色1', '角色2', '角色3']])\n",
|
374 |
-
" df_similarity['average'] = np.nan\n",
|
375 |
-
" #for p in range(len(embedd_user)): \n",
|
376 |
-
" index=len(embedd_user)-1 \n",
|
377 |
-
" for k in range(len(embedd_bk)):\n",
|
378 |
-
" list=[]\n",
|
379 |
-
" for i in range(1,4):\n",
|
380 |
-
" for j in range(3,6):\n",
|
381 |
-
" vec1=embedd_user.iloc[index,i]#i是第i個形容詞,數字是第幾個是使用者輸入\n",
|
382 |
-
" vec2=embedd_bk.iloc[k,j]\n",
|
383 |
-
" similarity = cosine_similarity([vec1], [vec2])\n",
|
384 |
-
" list.append(similarity[0][0])\n",
|
385 |
-
" # 计算总和\n",
|
386 |
-
" total_sum = sum(list)\n",
|
387 |
-
" # 计算数量\n",
|
388 |
-
" count = len(list)\n",
|
389 |
-
" # 计算平均值\n",
|
390 |
-
" average = total_sum / count\n",
|
391 |
-
" df_similarity.loc[k,'average']=average\n",
|
392 |
-
"\n",
|
393 |
-
" top_books,sorted_df = top_n_books_by_average(df_similarity)\n",
|
394 |
-
" return sorted_df \n",
|
395 |
-
"\n",
|
396 |
-
"def filter(sorted_df):\n",
|
397 |
-
" filter_prompt4 = PromptTemplate(\n",
|
398 |
-
" input_variables=[\"mental_issue\", \"user_identity\",\" book\",\"book_reader\", \"book_description\"],\n",
|
399 |
-
" template=\"\"\"[INST]<<SYS>>你是專業的心理諮商師和書籍推薦專家,擅長根據使用者的心理問題、身份特質,以及書名、書籍針對的主題和適合的讀者,判斷書籍是否適合推薦給使用者。\n",
|
400 |
-
"\n",
|
401 |
-
" 你的目的是幫助讀者找到可以緩解心理問題的書籍。請注意:\n",
|
402 |
-
" 1. 若書籍針對的問題與使用者的心理問題有關聯,即使書籍適合的讀者群與使用者身份沒有直接關聯,應偏向推薦。\n",
|
403 |
-
" 2. 若使用者身份的需求與書籍針對的問題有潛在關聯,應偏向推薦。\n",
|
404 |
-
" 3. 若書籍適合的讀者與使用者身份特質有任何關聯,應傾向推薦。\n",
|
405 |
-
" 4. 若書名跟使用者的心理問題或身分特質有任何關聯,應偏向推薦<</SYS>>\n",
|
406 |
-
"\n",
|
407 |
-
" 使用者提供的資訊如下:\n",
|
408 |
-
" 使用者身份是「{user_identity}」,其心理問題是「{mental_issue}」。書名是{book},書籍適合的讀者群為「{book_reader}」,書籍針對的問題是「{book_description}」。\n",
|
409 |
-
"\n",
|
410 |
-
" 請根據以上資訊判斷這本書是否適合推薦給該使用者。\n",
|
411 |
-
" 僅輸出「是」或「否」,輸出後即停止。[/INST]\"\"\"\n",
|
412 |
-
" )\n",
|
413 |
-
" df_filter=sorted_df.iloc[:20,:]\n",
|
414 |
-
" df_filter = df_filter.reset_index(drop=True)\n",
|
415 |
-
" df_filter=df_filter.assign(推薦=None)\n",
|
416 |
-
" #df_similarity= pd.DataFrame(df_bk[['書名',\"內容簡介\",\"URL\",\"形容詞1\", \"形容詞2\", \"形容詞3\", '角色1', '角色2', '角色3']])\n",
|
417 |
-
" #df_similarity['average'] = np.nan\n",
|
418 |
-
"\n",
|
419 |
-
" \n",
|
420 |
-
" p=len(df_user)-1\n",
|
421 |
-
" for k in range(len(df_filter)): \n",
|
422 |
-
" word=df_user[\"輸入內容\"].iloc[p]\n",
|
423 |
-
" #book_reader = df_filter[\"角色1\"].iloc[p] + \"or\" + df_filter[\"角色2\"].iloc[p] + \"or\" + df_filter[\"角色3\"].iloc[p]\n",
|
424 |
-
" book=df_filter[\"書名\"].iloc[k] \n",
|
425 |
-
" book_reader = df_filter[\"角色1\"].iloc[k] \n",
|
426 |
-
" user_identity = df_user[\"角色1\"].iloc[p]\n",
|
427 |
-
" mental_issue=df_user[\"形容詞1\"].iloc[p]+\"、\"+df_user[\"形容詞2\"].iloc[p]+\"、\"+df_user[\"形容詞3\"].iloc[p]\n",
|
428 |
-
" book_description=df_filter[\"形容詞1\"].iloc[k]+\"、\"+df_filter[\"形容詞2\"].iloc[k]+\"、\"+df_filter[\"形容詞3\"].iloc[k]\n",
|
429 |
-
" print(book_reader)\n",
|
430 |
-
" print(user_identity)\n",
|
431 |
-
" #output = filter_prompt1.invoke({\"user_identity\": user_identity, \"book_reader\": book_reader})\n",
|
432 |
-
" output = filter_prompt4.invoke({\"mental_issue\":mental_issue,\"user_identity\": user_identity, \"book\":book,\"book_description\":book_description,\"book_reader\": book_reader})\n",
|
433 |
-
" string2=invoke_with_temperature(output)\n",
|
434 |
-
" df_filter.loc[k, '推薦'] =string2\n",
|
435 |
-
" df_recommend=df_filter[df_filter[\"推薦\"].str.strip() == \"是\"]\n",
|
436 |
-
" \n",
|
437 |
-
" return df_recommend\n",
|
438 |
-
"def output_content(df_recommend):\n",
|
439 |
-
" content_prompt = PromptTemplate(\n",
|
440 |
-
" input_variables=[\"content\"],\n",
|
441 |
-
" template=\"\"\"[INST]<<SYS>>你是一個有同理心的心理師,負責推薦相關書籍給使用者<</SYS>>你是一個有同理心的心理師,\n",
|
442 |
-
" 請根據{content},用平易近人且不官方的語氣,先介紹這本書的內容,總共約50-70字[/INST]\"\"\"\n",
|
443 |
-
" )\n",
|
444 |
-
"\n",
|
445 |
-
" a=0\n",
|
446 |
-
" title=df_recommend.loc[a,\"書名\"]\n",
|
447 |
-
" #URL=sorted_df.iloc[a,1]\n",
|
448 |
-
" #content=sorted_df.iloc[a,2]\n",
|
449 |
-
" \n",
|
450 |
-
"# prompt_value2=content_prompt.invoke({\"content\":content})\n",
|
451 |
-
"# summary=invoke_with_temperature(prompt_value2)\n",
|
452 |
-
"# recommend_prompt = PromptTemplate(\n",
|
453 |
-
"# input_variables=[\"title\",\"URL\",\"summary\"],\n",
|
454 |
-
"# template=\"\"\"<<SYS>>\n",
|
455 |
-
"# 你是一個有同理心的心理師,負責推薦相關書籍給使用者<</SYS>>\n",
|
456 |
-
"# [INST] \n",
|
457 |
-
"# 請根據{title}{URL}{summary}產出訊息,開頭不要有空格,並在最後面加入一句或兩句鼓勵的話\n",
|
458 |
-
"# 格式為:根據您的狀態,這裡提供一本書供您參考\\n\n",
|
459 |
-
"# 書名:{title}\\n\n",
|
460 |
-
"# 本書介紹:{summary}\\n\n",
|
461 |
-
"# 購書網址:{URL}\\n\n",
|
462 |
-
"# 希望對您有所幫助\n",
|
463 |
-
"# [/INST]\"\"\"\n",
|
464 |
-
"# )\n",
|
465 |
-
"# prompt_value1=recommend_prompt.invoke({\"title\":title,\"URL\":URL,\"summary\":summary})\n",
|
466 |
-
" \n",
|
467 |
-
" recommend_prompt = PromptTemplate(\n",
|
468 |
-
" input_variables=[\"title\"],\n",
|
469 |
-
" template=\"\"\"<<SYS>>\n",
|
470 |
-
" 你是一個有同理心的心理師,負責推薦相關書籍給使用者<</SYS>>\n",
|
471 |
-
" [INST] \n",
|
472 |
-
" 請根據{title}產出訊息,開頭不要有空格,並在最後面加入一句或兩句鼓勵的話\n",
|
473 |
-
" 格式為:根據您的狀態,這裡提供一本書供您參考\\n\n",
|
474 |
-
" 書名:{title}\\n\n",
|
475 |
-
" 希望對您有所幫助\n",
|
476 |
-
" [/INST]\"\"\"\n",
|
477 |
-
" )\n",
|
478 |
-
" prompt_value1=recommend_prompt.invoke({\"title\":title})\n",
|
479 |
-
" output=invoke_with_temperature(prompt_value1,temperature=0.4)\n",
|
480 |
-
" return output \n",
|
481 |
-
" \n",
|
482 |
-
"def main_pipeline(message,history):\n",
|
483 |
-
" \n",
|
484 |
-
" df_user=process_user_input(message)\n",
|
485 |
-
" embedd_user=embedd_df_user(df_user)\n",
|
486 |
-
" sorted_df=similarity(embedd_user,embedd_bk,df_bk)\n",
|
487 |
-
" df_filter=filter(sorted_df)\n",
|
488 |
-
" final=output_content(df_filter)\n",
|
489 |
-
" return final \n",
|
490 |
-
" \n",
|
491 |
-
"\n",
|
492 |
-
"# def recommend(message,history):\n",
|
493 |
-
"# result=main_pipeline(message)\n",
|
494 |
-
"# return result\n",
|
495 |
-
"\n",
|
496 |
-
"demo=gr.ChatInterface(main_pipeline,type=\"messages\")\n",
|
497 |
-
"\n",
|
498 |
-
"# with gr.Blocks() as demo:\n",
|
499 |
-
"# gr.Markdown(\"Start typing below and then click **Run** to see the output.\")\n",
|
500 |
-
"# with gr.Row():\n",
|
501 |
-
"# inp = gr.Textbox(placeholder=\"What is your name?\")\n",
|
502 |
-
"# out = gr.Textbox()\n",
|
503 |
-
"# btn = gr.Button(\"Run\")\n",
|
504 |
-
"# btn.click(fn=recommend, inputs=inp, outputs=out)\n",
|
505 |
-
"if __name__ == \"__main__\":\n",
|
506 |
-
" demo.launch()"
|
507 |
-
]
|
508 |
-
},
|
509 |
-
{
|
510 |
-
"cell_type": "code",
|
511 |
-
"execution_count": 6,
|
512 |
-
"id": "487c853d",
|
513 |
-
"metadata": {},
|
514 |
-
"outputs": [
|
515 |
-
{
|
516 |
-
"name": "stdout",
|
517 |
-
"output_type": "stream",
|
518 |
-
"text": [
|
519 |
-
"Running on local URL: http://127.0.0.1:7866\n",
|
520 |
-
"\n",
|
521 |
-
"To create a public link, set `share=True` in `launch()`.\n"
|
522 |
-
]
|
523 |
-
},
|
524 |
-
{
|
525 |
-
"data": {
|
526 |
-
"text/html": [
|
527 |
-
"<div><iframe src=\"http://127.0.0.1:7866/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
528 |
-
],
|
529 |
-
"text/plain": [
|
530 |
-
"<IPython.core.display.HTML object>"
|
531 |
-
]
|
532 |
-
},
|
533 |
-
"metadata": {},
|
534 |
-
"output_type": "display_data"
|
535 |
-
},
|
536 |
-
{
|
537 |
-
"name": "stderr",
|
538 |
-
"output_type": "stream",
|
539 |
-
"text": [
|
540 |
-
"C:\\Users\\user\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\gradio\\analytics.py:106: UserWarning: IMPORTANT: You are using gradio version 4.44.0, however version 4.44.1 is available, please upgrade. \n",
|
541 |
-
"--------\n",
|
542 |
-
" warnings.warn(\n"
|
543 |
-
]
|
544 |
-
},
|
545 |
-
{
|
546 |
-
"name": "stdout",
|
547 |
-
"output_type": "stream",
|
548 |
-
"text": [
|
549 |
-
" 情緒控制困難,壓力負荷過高,人際衝突"
|
550 |
-
]
|
551 |
-
},
|
552 |
-
{
|
553 |
-
"name": "stderr",
|
554 |
-
"output_type": "stream",
|
555 |
-
"text": [
|
556 |
-
"Traceback (most recent call last):\n",
|
557 |
-
" File \"C:\\Users\\user\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\gradio\\queueing.py\", line 536, in process_events\n",
|
558 |
-
" response = await route_utils.call_process_api(\n",
|
559 |
-
" File \"C:\\Users\\user\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\gradio\\route_utils.py\", line 322, in call_process_api\n",
|
560 |
-
" output = await app.get_blocks().process_api(\n",
|
561 |
-
" File \"C:\\Users\\user\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\gradio\\blocks.py\", line 1935, in process_api\n",
|
562 |
-
" result = await self.call_function(\n",
|
563 |
-
" File \"C:\\Users\\user\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\gradio\\blocks.py\", line 1518, in call_function\n",
|
564 |
-
" prediction = await fn(*processed_input)\n",
|
565 |
-
" File \"C:\\Users\\user\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\gradio\\utils.py\", line 793, in async_wrapper\n",
|
566 |
-
" response = await f(*args, **kwargs)\n",
|
567 |
-
" File \"C:\\Users\\user\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\gradio\\chat_interface.py\", line 623, in _submit_fn\n",
|
568 |
-
" response = await anyio.to_thread.run_sync(\n",
|
569 |
-
" File \"C:\\Users\\user\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\anyio\\to_thread.py\", line 56, in run_sync\n",
|
570 |
-
" return await get_async_backend().run_sync_in_worker_thread(\n",
|
571 |
-
" File \"C:\\Users\\user\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\anyio\\_backends\\_asyncio.py\", line 2441, in run_sync_in_worker_thread\n",
|
572 |
-
" return await future\n",
|
573 |
-
" File \"C:\\Users\\user\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\anyio\\_backends\\_asyncio.py\", line 943, in run\n",
|
574 |
-
" result = context.run(func, *args)\n",
|
575 |
-
" File \"C:\\Users\\user\\AppData\\Local\\Temp\\ipykernel_17468\\1758736236.py\", line 78, in main_pipeline\n",
|
576 |
-
" df_filter=filter(sorted_df)\n",
|
577 |
-
" File \"C:\\Users\\user\\AppData\\Local\\Temp\\ipykernel_17468\\2638884024.py\", line 162, in filter\n",
|
578 |
-
" p=len(df_user)-1\n",
|
579 |
-
"NameError: name 'df_user' is not defined\n"
|
580 |
-
]
|
581 |
-
}
|
582 |
-
],
|
583 |
-
"source": [
|
584 |
-
"import gradio as gr\n",
|
585 |
-
"from llama_cpp import Llama\n",
|
586 |
-
"from langchain_community.llms import LlamaCpp\n",
|
587 |
-
"from langchain.prompts import PromptTemplate\n",
|
588 |
-
"import llama_cpp\n",
|
589 |
-
"from langchain.callbacks.manager import CallbackManager\n",
|
590 |
-
"from sentence_transformers import SentenceTransformer\n",
|
591 |
-
"from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler\n",
|
592 |
-
"import numpy as np\n",
|
593 |
-
"import pandas as pd\n",
|
594 |
-
"import re\n",
|
595 |
-
"import os\n",
|
596 |
-
"from sklearn.metrics.pairwise import cosine_similarity\n",
|
597 |
-
"\n",
|
598 |
-
"model = SentenceTransformer('sentence-transformers/paraphrase-multilingual-mpnet-base-v2',device='cpu')\n",
|
599 |
-
"\n",
|
600 |
-
"llm = LlamaCpp(\n",
|
601 |
-
" model_path=r\"C:\\Users\\user\\breeze-7b-instruct-v1_0-q4_k_m.gguf\",\n",
|
602 |
-
" n_gpu_layers=100,\n",
|
603 |
-
" n_batch=512,\n",
|
604 |
-
" n_ctx=3000,\n",
|
605 |
-
" f16_kv=True,\n",
|
606 |
-
" callback_manager=CallbackManager([StreamingStdOutCallbackHandler()]),\n",
|
607 |
-
" verbose=False,\n",
|
608 |
-
")\n",
|
609 |
-
"\n",
|
610 |
-
"embedd_bk=pd.read_pickle(r\"C:\\Users\\user\\推薦系統實作\\bk_description1_角色形容詞_677.pkl\")\n",
|
611 |
-
"df_bk=pd.read_excel(r\"C:\\Users\\user\\推薦系統實作\\bk_description1_角色形容詞.xlsx\")\n",
|
612 |
-
"\n",
|
613 |
-
"def invoke_with_temperature(prompt, temperature=0.4):\n",
|
614 |
-
" return llm.invoke(prompt, temperature=temperature)\n",
|
615 |
-
"\n",
|
616 |
-
"def process_user_input(message):\n",
|
617 |
-
" \n",
|
618 |
-
" user_mental_state4= PromptTemplate(\n",
|
619 |
-
" input_variables=[\"input\"],\n",
|
620 |
-
" template=\"\"\"[INST]<<SYS>>你是一位具有同理心的專業心理諮商師,沒有性別歧視,你可以客觀的根據談話內容的描述,判斷說話的人的心理困擾<</SYS>> \n",
|
621 |
-
" 請根據{input}描述三個最有可能心理困擾,輸出只包含三個心理困擾,回答格式只採用CSV格式,分隔符號使用逗號,參考以下範例:名詞1,名詞2,名詞3。[/INST]\"\"\"\n",
|
622 |
-
" )\n",
|
623 |
-
" \n",
|
624 |
-
" user_character= PromptTemplate(\n",
|
625 |
-
" input_variables=[\"input\"],\n",
|
626 |
-
" template=\"\"\"[INST]<<SYS>>你是一位具有同理心的專業心理諮商師,沒有性別歧視,你可以客觀的根據談話內容的描述,判斷說話的大學生,在生活中的多重角色身分<</SYS>> \n",
|
627 |
-
" 請你根據談話內容{input},客觀的判斷說話的大學生,在談話內容中的角色,以及他生活中其他角色的身分,提供三個最有可能的角色身分名詞,\n",
|
628 |
-
" 輸出只包含三個身分名詞,回答格式只採用CSV格式,分隔符號使用逗號,參考以下範例:名詞1,名詞2,名詞3。[/INST]\"\"\"\n",
|
629 |
-
" )\n",
|
630 |
-
" \n",
|
631 |
-
"\n",
|
632 |
-
" df_user=pd.DataFrame(columns=[\"輸入內容\",\"形容詞1\", \"形容詞2\", \"形容詞3\", \"角色1\", \"角色2\", \"角色3\"])\n",
|
633 |
-
" #df_user_record=pd.read_excel(r\"C:\\Users\\Cora\\推薦系統實作\\gradio系統歷史紀錄.xlsx\")\n",
|
634 |
-
" \n",
|
635 |
-
"\n",
|
636 |
-
" prompt_value1=user_mental_state4.invoke({\"input\":message})\n",
|
637 |
-
" string=invoke_with_temperature(prompt_value1)\n",
|
638 |
-
" #print(\"\\n\")\n",
|
639 |
-
"\n",
|
640 |
-
" # 將字符串分割為名詞\n",
|
641 |
-
" adjectives = [adj.strip() for adj in re.split('[,、,]', string)]\n",
|
642 |
-
" \n",
|
643 |
-
" index=len(df_user)\n",
|
644 |
-
" df_user.loc[index, '輸入內容'] = message\n",
|
645 |
-
"\n",
|
646 |
-
" # 確保形容詞數量符合欄位數量\n",
|
647 |
-
" if len(adjectives) == 3:\n",
|
648 |
-
" df_user.loc[index, '形容詞1'] = adjectives[0]\n",
|
649 |
-
" df_user.loc[index, '形容詞2'] = adjectives[1]\n",
|
650 |
-
" df_user.loc[index, '形容詞3'] = adjectives[2]\n",
|
651 |
-
" df_user.to_excel(\"user_gradio系統.xlsx\")\n",
|
652 |
-
" return df_user\n",
|
653 |
-
"\n",
|
654 |
-
" \n",
|
655 |
-
" \n",
|
656 |
-
"def main_pipeline(message,history):\n",
|
657 |
-
" \n",
|
658 |
-
" df_user=process_user_input(message)\n",
|
659 |
-
" embedd_user=embedd_df_user(df_user)\n",
|
660 |
-
" sorted_df=similarity(embedd_user,embedd_bk,df_bk)\n",
|
661 |
-
" df_filter=filter(sorted_df)\n",
|
662 |
-
" final=output_content(df_filter)\n",
|
663 |
-
" return final \n",
|
664 |
-
" \n",
|
665 |
-
"\n",
|
666 |
-
"\n",
|
667 |
-
"demo=gr.ChatInterface(main_pipeline,type=\"messages\")\n",
|
668 |
-
"\n",
|
669 |
-
"\n",
|
670 |
-
"if __name__ == \"__main__\":\n",
|
671 |
-
" demo.launch()"
|
672 |
-
]
|
673 |
-
},
|
674 |
-
{
|
675 |
-
"cell_type": "code",
|
676 |
-
"execution_count": 19,
|
677 |
-
"id": "b3cadc4a-6f63-4038-bcfb-ef419ad5394a",
|
678 |
-
"metadata": {},
|
679 |
-
"outputs": [
|
680 |
-
{
|
681 |
-
"name": "stdout",
|
682 |
-
"output_type": "stream",
|
683 |
-
"text": [
|
684 |
-
"Running on local URL: http://127.0.0.1:7873\n",
|
685 |
-
"\n",
|
686 |
-
"To create a public link, set `share=True` in `launch()`.\n"
|
687 |
-
]
|
688 |
-
},
|
689 |
-
{
|
690 |
-
"data": {
|
691 |
-
"text/html": [
|
692 |
-
"<div><iframe src=\"http://127.0.0.1:7873/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
693 |
-
],
|
694 |
-
"text/plain": [
|
695 |
-
"<IPython.core.display.HTML object>"
|
696 |
-
]
|
697 |
-
},
|
698 |
-
"metadata": {},
|
699 |
-
"output_type": "display_data"
|
700 |
-
},
|
701 |
-
{
|
702 |
-
"name": "stderr",
|
703 |
-
"output_type": "stream",
|
704 |
-
"text": [
|
705 |
-
"C:\\Users\\user\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\gradio\\analytics.py:106: UserWarning: IMPORTANT: You are using gradio version 4.44.0, however version 4.44.1 is available, please upgrade. \n",
|
706 |
-
"--------\n",
|
707 |
-
" warnings.warn(\n"
|
708 |
-
]
|
709 |
-
}
|
710 |
-
],
|
711 |
-
"source": [
|
712 |
-
"import gradio as gr\n",
|
713 |
-
"from llama_cpp import Llama\n",
|
714 |
-
"from langchain_community.llms import LlamaCpp\n",
|
715 |
-
"from langchain.prompts import PromptTemplate\n",
|
716 |
-
"import llama_cpp\n",
|
717 |
-
"from langchain.callbacks.manager import CallbackManager\n",
|
718 |
-
"from sentence_transformers import SentenceTransformer\n",
|
719 |
-
"from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler\n",
|
720 |
-
"import numpy as np\n",
|
721 |
-
"import pandas as pd\n",
|
722 |
-
"import re\n",
|
723 |
-
"import os\n",
|
724 |
-
"from sklearn.metrics.pairwise import cosine_similarity\n",
|
725 |
-
"\n",
|
726 |
-
"model = SentenceTransformer('sentence-transformers/paraphrase-multilingual-mpnet-base-v2',device='cpu')\n",
|
727 |
-
"\n",
|
728 |
-
"title=\"書籍推薦平台\"\n",
|
729 |
-
"\n",
|
730 |
-
"# llm = LlamaCpp(\n",
|
731 |
-
"# model_path=r\"C:\\Users\\Cora\\.cache\\lm-studio\\models\\YC-Chen\\Breeze-7B-Instruct-v1_0-GGUF\\breeze-7b-instruct-v1_0-q4_k_m.gguf\",\n",
|
732 |
-
"# n_gpu_layers=100,\n",
|
733 |
-
"# n_batch=512,\n",
|
734 |
-
"# n_ctx=3000,\n",
|
735 |
-
"# f16_kv=True,\n",
|
736 |
-
"# callback_manager=CallbackManager([StreamingStdOutCallbackHandler()]),\n",
|
737 |
-
"# verbose=False,\n",
|
738 |
-
"# )\n",
|
739 |
-
"\n",
|
740 |
-
"llm = LlamaCpp(\n",
|
741 |
-
" model_path=r\"C:\\Users\\user\\breeze-7b-instruct-v1_0-q4_k_m.gguf\",\n",
|
742 |
-
" n_gpu_layers=100,\n",
|
743 |
-
" n_batch=512,\n",
|
744 |
-
" n_ctx=3000,\n",
|
745 |
-
" f16_kv=True,\n",
|
746 |
-
" callback_manager=CallbackManager([StreamingStdOutCallbackHandler()]),\n",
|
747 |
-
" verbose=False,\n",
|
748 |
-
")\n",
|
749 |
-
"\n",
|
750 |
-
"embedd_bk=pd.read_pickle(r\"C:\\Users\\user\\推薦系統實作\\bk_description1_角色形容詞_677.pkl\")\n",
|
751 |
-
"df_bk=pd.read_excel(r\"C:\\Users\\user\\推薦系統實作\\bk_description1_角色形容詞.xlsx\")\n",
|
752 |
-
"\n",
|
753 |
-
"def invoke_with_temperature(prompt, temperature=0.4):\n",
|
754 |
-
" return llm.invoke(prompt, temperature=temperature)\n",
|
755 |
-
"\n",
|
756 |
-
"def process_user_input(message):\n",
|
757 |
-
" user_mental_state4= PromptTemplate(\n",
|
758 |
-
" input_variables=[\"input\"],\n",
|
759 |
-
" template=\"\"\"[INST]<<SYS>>你是一位具有同理心的專業心理諮商師,沒有性別歧視,你可以客觀的根據談話內容的描述,判斷說話的人的心理困擾<</SYS>> \n",
|
760 |
-
" 請根據{input}描述三個最有可能心理困擾,輸出只包含三個心理困擾,回答格式只採用CSV格式,分隔符號使用逗號,參考以下��例:名詞1,名詞2,名詞3。[/INST]\"\"\"\n",
|
761 |
-
" )\n",
|
762 |
-
" \n",
|
763 |
-
" user_character= PromptTemplate(\n",
|
764 |
-
" input_variables=[\"input\"],\n",
|
765 |
-
" template=\"\"\"[INST]<<SYS>>你是一位具有同理心的專業心理諮商師,沒有性別歧視,你可以客觀的根據談話內容的描述,判斷說話的大學生,在生活中的多重角色身分<</SYS>> \n",
|
766 |
-
" 請你根據談話內容{input},客觀的判斷說話的大學生,在談話內容中的角色,以及他生活中其他角色的身分,提供三個最有可能的角色身分名詞,\n",
|
767 |
-
" 輸出只包含三個身分名詞,回答格式只採用CSV格式,分隔符號使用逗號,參考以下範例:名詞1,名詞2,名詞3。[/INST]\"\"\"\n",
|
768 |
-
" )\n",
|
769 |
-
" \n",
|
770 |
-
"\n",
|
771 |
-
" df_user=pd.DataFrame(columns=[\"輸入內容\",\"形容詞1\", \"形容詞2\", \"形容詞3\", \"角色1\", \"角色2\", \"角色3\"])\n",
|
772 |
-
" #df_user_record=pd.read_excel(r\"C:\\Users\\Cora\\推薦系統實作\\gradio系統歷史紀錄.xlsx\")\n",
|
773 |
-
" \n",
|
774 |
-
"\n",
|
775 |
-
" prompt_value1=user_mental_state4.invoke({\"input\":message})\n",
|
776 |
-
" string=invoke_with_temperature(prompt_value1)\n",
|
777 |
-
" #print(\"\\n\")\n",
|
778 |
-
"\n",
|
779 |
-
" # 將字符串分割為名詞\n",
|
780 |
-
" adjectives = [adj.strip() for adj in re.split('[,、,]', string)]\n",
|
781 |
-
" \n",
|
782 |
-
" index=len(df_user)\n",
|
783 |
-
" df_user.loc[index, '輸入內容'] = message\n",
|
784 |
-
"\n",
|
785 |
-
" # 確保形容詞數量符合欄位數量\n",
|
786 |
-
" if len(adjectives) == 3:\n",
|
787 |
-
" df_user.loc[index, '形容詞1'] = adjectives[0]\n",
|
788 |
-
" df_user.loc[index, '形容詞2'] = adjectives[1]\n",
|
789 |
-
" df_user.loc[index, '形容詞3'] = adjectives[2]\n",
|
790 |
-
" df_user.to_excel(\"user_gradio系統.xlsx\")\n",
|
791 |
-
" return df_user\n",
|
792 |
-
" #return message\n",
|
793 |
-
"\n",
|
794 |
-
"def embedd_df_user(df_user):\n",
|
795 |
-
" \n",
|
796 |
-
" columns_to_encode=df_user.loc[:,[\"形容詞1\", \"形容詞2\", \"形容詞3\"]]\n",
|
797 |
-
"\n",
|
798 |
-
" # 初始化一個空的 DataFrame,用來存儲向量化結果\n",
|
799 |
-
" embedd_user=df_user[[\"輸入內容\"]]\n",
|
800 |
-
" #user_em= user_em.assign(形容詞1=None, 形容詞2=None, 形容詞3=None,角色1=None,角色2=None,角色3=None)\n",
|
801 |
-
" embedd_user= embedd_user.assign(形容詞1=None, 形容詞2=None, 形容詞3=None)\n",
|
802 |
-
" \n",
|
803 |
-
"\n",
|
804 |
-
" # 遍歷每一個單元格,將結果存入新的 DataFrame 中\n",
|
805 |
-
" i=len(df_user)-1\n",
|
806 |
-
" for col in columns_to_encode:\n",
|
807 |
-
" #print(i,col)\n",
|
808 |
-
" # 將每個單元格的內容進行向量化\n",
|
809 |
-
" embedd_user.at[i, col] = model.encode(df_user.at[i, col]) \n",
|
810 |
-
" \n",
|
811 |
-
" embedd_user.to_pickle(r\"C:\\Users\\user\\推薦系統實作\\user_gradio系統.pkl\")\n",
|
812 |
-
" \n",
|
813 |
-
" return embedd_user\n",
|
814 |
-
" #word=\"happy\"\n",
|
815 |
-
" #return word\n",
|
816 |
-
"\n",
|
817 |
-
"def top_n_books_by_average(df, n=3):\n",
|
818 |
-
" \n",
|
819 |
-
" # 根据 `average` 列降序排序\n",
|
820 |
-
" sorted_df = df.sort_values(by='average', ascending=False)\n",
|
821 |
-
" \n",
|
822 |
-
" # 选择前 N 行\n",
|
823 |
-
" top_n_df = sorted_df.head(n)\n",
|
824 |
-
" \n",
|
825 |
-
" # 提取书名列\n",
|
826 |
-
" top_books = top_n_df['書名'].tolist()\n",
|
827 |
-
" \n",
|
828 |
-
" return top_books,sorted_df\n",
|
829 |
-
"\n",
|
830 |
-
"def similarity(embedd_user,embedd_bk,df_bk):\n",
|
831 |
-
" df_similarity= pd.DataFrame(df_bk[['書名',\"內容簡介\",\"URL\",\"形容詞1\", \"形容詞2\", \"形容詞3\", '角色1', '角色2', '角色3']])\n",
|
832 |
-
" df_similarity['average'] = np.nan\n",
|
833 |
-
" #for p in range(len(embedd_user)): \n",
|
834 |
-
" index=len(embedd_user)-1 \n",
|
835 |
-
" for k in range(len(embedd_bk)):\n",
|
836 |
-
" list=[]\n",
|
837 |
-
" for i in range(1,4):\n",
|
838 |
-
" for j in range(3,6):\n",
|
839 |
-
" vec1=embedd_user.iloc[index,i]#i是第i個形容詞,數字是第幾個是使用者輸入\n",
|
840 |
-
" vec2=embedd_bk.iloc[k,j]\n",
|
841 |
-
" similarity = cosine_similarity([vec1], [vec2])\n",
|
842 |
-
" list.append(similarity[0][0])\n",
|
843 |
-
" # 计算总和\n",
|
844 |
-
" total_sum = sum(list)\n",
|
845 |
-
" # 计算数量\n",
|
846 |
-
" count = len(list)\n",
|
847 |
-
" # 计算平均值\n",
|
848 |
-
" average = total_sum / count\n",
|
849 |
-
" df_similarity.loc[k,'average']=average\n",
|
850 |
-
"\n",
|
851 |
-
" top_books,sorted_df = top_n_books_by_average(df_similarity)\n",
|
852 |
-
" return sorted_df \n",
|
853 |
-
"\n",
|
854 |
-
"def filter(sorted_df,df_user):\n",
|
855 |
-
" filter_prompt4 = PromptTemplate(\n",
|
856 |
-
" input_variables=[\"mental_issue\", \"user_identity\",\" book\",\"book_reader\", \"book_description\"],\n",
|
857 |
-
" template=\"\"\"[INST]<<SYS>>你是專業的心理諮商師和書籍推薦專家,擅長根據使用者的心理問題、身份特質,以及書名、書籍針對的主題和適合的讀者,判斷書籍是否適合推薦給使用者。\n",
|
858 |
-
"\n",
|
859 |
-
" 你的目的是幫助讀者找到可以緩解心理問題的書籍。請注意:\n",
|
860 |
-
" 1. 若書籍針對的問題與使用者的心理問題有關聯,即使書籍適合的讀者群與使用者身份沒有直接關聯,應偏向推薦。\n",
|
861 |
-
" 2. 若使用者身份的需求與書籍針對的問題有潛在關聯,應偏向推薦。\n",
|
862 |
-
" 3. 若書籍適合的讀者與使用者身份特質有任何關聯,應傾向推薦。\n",
|
863 |
-
" 4. 若書名跟使用者的心理問題或身分特質有任何關聯,應偏向推薦<</SYS>>\n",
|
864 |
-
"\n",
|
865 |
-
" 使用者提供的資訊如下:\n",
|
866 |
-
" 使用者身份是「{user_identity}」,其心理問題是「{mental_issue}」。書名是{book},書籍適合的讀者群為「{book_reader}」,書籍針對的問題是「{book_description}」。\n",
|
867 |
-
"\n",
|
868 |
-
" 請根據以上資訊判斷這本書是否適合推薦給該使用者。\n",
|
869 |
-
" 僅輸出「是」或「否」,輸出後即停止。[/INST]\"\"\"\n",
|
870 |
-
" )\n",
|
871 |
-
" df_filter=sorted_df.iloc[:20,:]\n",
|
872 |
-
" df_filter = df_filter.reset_index(drop=True)\n",
|
873 |
-
" df_filter=df_filter.assign(推薦=None)\n",
|
874 |
-
" #df_similarity= pd.DataFrame(df_bk[['書名',\"內容簡介\",\"URL\",\"形容詞1\", \"形容詞2\", \"形容詞3\", '角色1', '角色2', '角色3']])\n",
|
875 |
-
" #df_similarity['average'] = np.nan\n",
|
876 |
-
"\n",
|
877 |
-
" \n",
|
878 |
-
" p=len(df_user)-1\n",
|
879 |
-
" for k in range(len(df_filter)): \n",
|
880 |
-
" word=df_user[\"輸入內容\"].iloc[p]\n",
|
881 |
-
" #book_reader = df_filter[\"角色1\"].iloc[p] + \"or\" + df_filter[\"角色2\"].iloc[p] + \"or\" + df_filter[\"角色3\"].iloc[p]\n",
|
882 |
-
" book=df_filter[\"書名\"].iloc[k] \n",
|
883 |
-
" book_reader = df_filter[\"角色1\"].iloc[k] \n",
|
884 |
-
" user_identity = df_user[\"角色1\"].iloc[p]\n",
|
885 |
-
" mental_issue=df_user[\"形容詞1\"].iloc[p]+\"、\"+df_user[\"形容詞2\"].iloc[p]+\"、\"+df_user[\"形容詞3\"].iloc[p]\n",
|
886 |
-
" book_description=df_filter[\"形容詞1\"].iloc[k]+\"、\"+df_filter[\"形容詞2\"].iloc[k]+\"、\"+df_filter[\"形容詞3\"].iloc[k]\n",
|
887 |
-
" print(book_reader)\n",
|
888 |
-
" print(user_identity)\n",
|
889 |
-
" #output = filter_prompt1.invoke({\"user_identity\": user_identity, \"book_reader\": book_reader})\n",
|
890 |
-
" output = filter_prompt4.invoke({\"mental_issue\":mental_issue,\"user_identity\": user_identity, \"book\":book,\"book_description\":book_description,\"book_reader\": book_reader})\n",
|
891 |
-
" string2=invoke_with_temperature(output)\n",
|
892 |
-
" df_filter.loc[k, '推薦'] =string2\n",
|
893 |
-
" df_recommend=df_filter[df_filter[\"推薦\"].str.strip() == \"是\"]\n",
|
894 |
-
" \n",
|
895 |
-
" return df_recommend\n",
|
896 |
-
" \n",
|
897 |
-
"def output_content(df_recommend):\n",
|
898 |
-
" content_prompt = PromptTemplate(\n",
|
899 |
-
" input_variables=[\"content\"],\n",
|
900 |
-
" template=\"\"\"[INST]<<SYS>>你是一個有同理心的心理師,負責推薦相關書籍給使用者<</SYS>>你是一個有同理心的心理師,\n",
|
901 |
-
" 請根據{content},用平易近人且不官方的語氣,先介紹這本書的內容,總共約50-70字[/INST]\"\"\"\n",
|
902 |
-
" )\n",
|
903 |
-
"\n",
|
904 |
-
" a=0\n",
|
905 |
-
" title=df_recommend.iloc[a,0]#不用loc,因為filter的時候index沒有重新歸零\n",
|
906 |
-
" #URL=sorted_df.iloc[a,1]\n",
|
907 |
-
" #content=sorted_df.iloc[a,2]\n",
|
908 |
-
" \n",
|
909 |
-
"# prompt_value2=content_prompt.invoke({\"content\":content})\n",
|
910 |
-
"# summary=invoke_with_temperature(prompt_value2)\n",
|
911 |
-
"# recommend_prompt = PromptTemplate(\n",
|
912 |
-
"# input_variables=[\"title\",\"URL\",\"summary\"],\n",
|
913 |
-
"# template=\"\"\"<<SYS>>\n",
|
914 |
-
"# 你是一個有同理心的心理師,負責推薦相關書籍給使用者<</SYS>>\n",
|
915 |
-
"# [INST] \n",
|
916 |
-
"# 請根據{title}{URL}{summary}產出訊息,開頭不要有空格,並在最後面加入一句或兩句鼓勵的話\n",
|
917 |
-
"# 格式為:根據您的狀態,這裡提供一本書供您參考\\n\n",
|
918 |
-
"# 書名:{title}\\n\n",
|
919 |
-
"# 本書介紹:{summary}\\n\n",
|
920 |
-
"# 購書網址:{URL}\\n\n",
|
921 |
-
"# 希望對您有所幫助\n",
|
922 |
-
"# [/INST]\"\"\"\n",
|
923 |
-
"# )\n",
|
924 |
-
"# prompt_value1=recommend_prompt.invoke({\"title\":title,\"URL\":URL,\"summary\":summary})\n",
|
925 |
-
" \n",
|
926 |
-
" recommend_prompt = PromptTemplate(\n",
|
927 |
-
" input_variables=[\"title\"],\n",
|
928 |
-
" template=\"\"\"<<SYS>>\n",
|
929 |
-
" 你是一個有同理心的心理師,負責推薦相關書籍給使用者<</SYS>>\n",
|
930 |
-
" [INST] \n",
|
931 |
-
" 請根據{title}產出訊息,開頭不要有空格���並在最後面加入一句或兩句鼓勵的話\n",
|
932 |
-
" 格式為:根據您的狀態,這裡提供一本書供您參考\\n\n",
|
933 |
-
" 書名:{title}\\n\n",
|
934 |
-
" 希望對您有所幫助\n",
|
935 |
-
" [/INST]\"\"\"\n",
|
936 |
-
" )\n",
|
937 |
-
" prompt_value1=recommend_prompt.invoke({\"title\":title})\n",
|
938 |
-
" output=invoke_with_temperature(prompt_value1,temperature=0.4)\n",
|
939 |
-
" return output \n",
|
940 |
-
" \n",
|
941 |
-
"def main_pipeline(message,history):\n",
|
942 |
-
" \n",
|
943 |
-
" df_user=process_user_input(message)\n",
|
944 |
-
" embedd_user=embedd_df_user(df_user)\n",
|
945 |
-
" sorted_df=similarity(embedd_user,embedd_bk,df_bk)\n",
|
946 |
-
" df_filter=filter(sorted_df,df_user)\n",
|
947 |
-
" final=output_content(df_filter)\n",
|
948 |
-
" return final\n",
|
949 |
-
" #return embedd_user\n",
|
950 |
-
" \n",
|
951 |
-
" \n",
|
952 |
-
" \n",
|
953 |
-
"\n",
|
954 |
-
"# def recommend(message,history):\n",
|
955 |
-
"# result=main_pipeline(message)\n",
|
956 |
-
"# return result\n",
|
957 |
-
"\n",
|
958 |
-
"demo=gr.ChatInterface(main_pipeline,type=\"messages\")\n",
|
959 |
-
"\n",
|
960 |
-
"\n",
|
961 |
-
"if __name__ == \"__main__\":\n",
|
962 |
-
" demo.launch()"
|
963 |
-
]
|
964 |
-
},
|
965 |
-
{
|
966 |
-
"cell_type": "code",
|
967 |
-
"execution_count": null,
|
968 |
-
"id": "aaad2fb2-a8d8-46e4-b9d4-c276f5ef0cb0",
|
969 |
-
"metadata": {
|
970 |
-
"scrolled": true
|
971 |
-
},
|
972 |
-
"outputs": [],
|
973 |
-
"source": [
|
974 |
-
"pip install tf-keras"
|
975 |
-
]
|
976 |
-
},
|
977 |
-
{
|
978 |
-
"cell_type": "code",
|
979 |
-
"execution_count": 16,
|
980 |
-
"id": "cc344ace-81f1-45f2-ad4a-9cca508aa053",
|
981 |
-
"metadata": {},
|
982 |
-
"outputs": [
|
983 |
-
{
|
984 |
-
"data": {
|
985 |
-
"text/html": [
|
986 |
-
"<div>\n",
|
987 |
-
"<style scoped>\n",
|
988 |
-
" .dataframe tbody tr th:only-of-type {\n",
|
989 |
-
" vertical-align: middle;\n",
|
990 |
-
" }\n",
|
991 |
-
"\n",
|
992 |
-
" .dataframe tbody tr th {\n",
|
993 |
-
" vertical-align: top;\n",
|
994 |
-
" }\n",
|
995 |
-
"\n",
|
996 |
-
" .dataframe thead th {\n",
|
997 |
-
" text-align: right;\n",
|
998 |
-
" }\n",
|
999 |
-
"</style>\n",
|
1000 |
-
"<table border=\"1\" class=\"dataframe\">\n",
|
1001 |
-
" <thead>\n",
|
1002 |
-
" <tr style=\"text-align: right;\">\n",
|
1003 |
-
" <th></th>\n",
|
1004 |
-
" <th>書名</th>\n",
|
1005 |
-
" <th>內容簡介</th>\n",
|
1006 |
-
" <th>URL</th>\n",
|
1007 |
-
" <th>形容詞1</th>\n",
|
1008 |
-
" <th>形容詞2</th>\n",
|
1009 |
-
" <th>形容詞3</th>\n",
|
1010 |
-
" <th>角色1</th>\n",
|
1011 |
-
" <th>角色2</th>\n",
|
1012 |
-
" <th>角色3</th>\n",
|
1013 |
-
" </tr>\n",
|
1014 |
-
" </thead>\n",
|
1015 |
-
" <tbody>\n",
|
1016 |
-
" <tr>\n",
|
1017 |
-
" <th>0</th>\n",
|
1018 |
-
" <td>這僅有一次的人生, 我不想說抱歉</td>\n",
|
1019 |
-
" <td>你走太快了,容易迷路,要等靈魂跟上來,才能走更遠的路。那些你想要做成的事情,你做成了的事情,...</td>\n",
|
1020 |
-
" <td>https://www.eslite.com/product/100120106326824...</td>\n",
|
1021 |
-
" <td>自我期許</td>\n",
|
1022 |
-
" <td>自我反思</td>\n",
|
1023 |
-
" <td>人生目標</td>\n",
|
1024 |
-
" <td>自我提升</td>\n",
|
1025 |
-
" <td>人生感悟</td>\n",
|
1026 |
-
" <td>內心成長</td>\n",
|
1027 |
-
" </tr>\n",
|
1028 |
-
" <tr>\n",
|
1029 |
-
" <th>1</th>\n",
|
1030 |
-
" <td>我只是想分手而已: 親密殺人, 被深愛的男人殺死的女人們</td>\n",
|
1031 |
-
" <td>親密殺人不是約會暴力是整個社會必須全力阻止的連續殺人!只是想跟他分手的我,為何最後卻送了命?...</td>\n",
|
1032 |
-
" <td>https://www.eslite.com/product/100120106326824...</td>\n",
|
1033 |
-
" <td>心理創傷</td>\n",
|
1034 |
-
" <td>暴力受暴經驗</td>\n",
|
1035 |
-
" <td>感情困境</td>\n",
|
1036 |
-
" <td>法律系學生</td>\n",
|
1037 |
-
" <td>社會工作者</td>\n",
|
1038 |
-
" <td>性別平權運動者</td>\n",
|
1039 |
-
" </tr>\n",
|
1040 |
-
" <tr>\n",
|
1041 |
-
" <th>2</th>\n",
|
1042 |
-
" <td>輕鬆思考法: 培養靈活觀點的150個啟示</td>\n",
|
1043 |
-
" <td>本書特色150則啟示點醒沉浮於忙碌生活的現代人!篇幅短小、內容精闢,1分鐘打開新思維!擁有不...</td>\n",
|
1044 |
-
" <td>https://www.eslite.com/product/100121372526824...</td>\n",
|
1045 |
-
" <td>焦慮</td>\n",
|
1046 |
-
" <td>孤獨</td>\n",
|
1047 |
-
" <td>成長</td>\n",
|
1048 |
-
" <td>職場人</td>\n",
|
1049 |
-
" <td>旅行愛好者</td>\n",
|
1050 |
-
" <td>追求自我成長的人</td>\n",
|
1051 |
-
" </tr>\n",
|
1052 |
-
" <tr>\n",
|
1053 |
-
" <th>3</th>\n",
|
1054 |
-
" <td>因為人類思維太僵化, 所以需要創新心理學: 心態革命, 大腦中的髮夾彎, 掀起你的思路風暴</td>\n",
|
1055 |
-
" <td>大腦中的髮夾彎,掀起你的思路風暴!從理性到感性,不同思考方式將會開啟新的視角、新的世界!逆向...</td>\n",
|
1056 |
-
" <td>https://www.eslite.com/product/100122024826824...</td>\n",
|
1057 |
-
" <td>焦慮</td>\n",
|
1058 |
-
" <td>壓��</td>\n",
|
1059 |
-
" <td>抑鬱</td>\n",
|
1060 |
-
" <td>好奇心旺盛的思考愛好者</td>\n",
|
1061 |
-
" <td>希望提高日常解決問題技巧的人</td>\n",
|
1062 |
-
" <td>渴望提升創新思維能力的人</td>\n",
|
1063 |
-
" </tr>\n",
|
1064 |
-
" <tr>\n",
|
1065 |
-
" <th>4</th>\n",
|
1066 |
-
" <td>人生心理學</td>\n",
|
1067 |
-
" <td>找出人生發展的路向從來都不容易,無論你是臨近畢業的大專生,或是已在職場上打滾了好些年正在瓶頸...</td>\n",
|
1068 |
-
" <td>https://www.eslite.com/product/100121238026824...</td>\n",
|
1069 |
-
" <td>生涯規劃</td>\n",
|
1070 |
-
" <td>自我覺察</td>\n",
|
1071 |
-
" <td>人生意義</td>\n",
|
1072 |
-
" <td>大學生</td>\n",
|
1073 |
-
" <td>職場工作者</td>\n",
|
1074 |
-
" <td>心理學研究者</td>\n",
|
1075 |
-
" </tr>\n",
|
1076 |
-
" <tr>\n",
|
1077 |
-
" <th>...</th>\n",
|
1078 |
-
" <td>...</td>\n",
|
1079 |
-
" <td>...</td>\n",
|
1080 |
-
" <td>...</td>\n",
|
1081 |
-
" <td>...</td>\n",
|
1082 |
-
" <td>...</td>\n",
|
1083 |
-
" <td>...</td>\n",
|
1084 |
-
" <td>...</td>\n",
|
1085 |
-
" <td>...</td>\n",
|
1086 |
-
" <td>...</td>\n",
|
1087 |
-
" </tr>\n",
|
1088 |
-
" <tr>\n",
|
1089 |
-
" <th>672</th>\n",
|
1090 |
-
" <td>你想要的一切, 宇宙早已為你預備</td>\n",
|
1091 |
-
" <td>宇宙會把最好的獻給你。如果你願意放下自我限制的信念,全然信任這股奇妙的力量,豐盛的人生自然會...</td>\n",
|
1092 |
-
" <td>https://www.eslite.com/product/100120176426824...</td>\n",
|
1093 |
-
" <td>困惑</td>\n",
|
1094 |
-
" <td>壓力</td>\n",
|
1095 |
-
" <td>不滿</td>\n",
|
1096 |
-
" <td>焦慮症患者</td>\n",
|
1097 |
-
" <td>心理負荷過重者</td>\n",
|
1098 |
-
" <td>靈性追求者</td>\n",
|
1099 |
-
" </tr>\n",
|
1100 |
-
" <tr>\n",
|
1101 |
-
" <th>673</th>\n",
|
1102 |
-
" <td>妄想的力量: 迷信、儀式感與過度樂觀的非理性心理學</td>\n",
|
1103 |
-
" <td>妄想雖然可恥但是有用!亞馬遜讀者五星強推!最熱愛怪力亂神的美國心理學暢銷作家帶你重新認識幻想...</td>\n",
|
1104 |
-
" <td>https://www.eslite.com/product/100120106326824...</td>\n",
|
1105 |
-
" <td>妄想</td>\n",
|
1106 |
-
" <td>心理假象</td>\n",
|
1107 |
-
" <td>樂觀</td>\n",
|
1108 |
-
" <td>心理學家</td>\n",
|
1109 |
-
" <td>精神病患者家屬</td>\n",
|
1110 |
-
" <td>普通大眾</td>\n",
|
1111 |
-
" </tr>\n",
|
1112 |
-
" <tr>\n",
|
1113 |
-
" <th>674</th>\n",
|
1114 |
-
" <td>悲傷復原力: 一位心理學專家, 也是位失去愛女的母親, 透過復原力心理學, 走過分離崩解的悲傷</td>\n",
|
1115 |
-
" <td>面對至親至愛的離去,如果悲傷難免,我們可以做些什麼,度過這場巨大風暴?紐約時報、華爾街日報,...</td>\n",
|
1116 |
-
" <td>https://www.eslite.com/product/100121380726824...</td>\n",
|
1117 |
-
" <td>喪親之痛</td>\n",
|
1118 |
-
" <td>悲傷</td>\n",
|
1119 |
-
" <td>復原力</td>\n",
|
1120 |
-
" <td>親人失去</td>\n",
|
1121 |
-
" <td>悲傷修復</td>\n",
|
1122 |
-
" <td>心理健康</td>\n",
|
1123 |
-
" </tr>\n",
|
1124 |
-
" <tr>\n",
|
1125 |
-
" <th>675</th>\n",
|
1126 |
-
" <td>淬鍊幸福, 剛剛好的回憶練習 (限量贈暖心陪伴藏書卡)</td>\n",
|
1127 |
-
" <td>為什麼自己會突然情緒崩潰?從什麼時候開始,變得越來越少話?每當回憶起某件事時,就會止不住的落...</td>\n",
|
1128 |
-
" <td>https://www.eslite.com/product/100120303926824...</td>\n",
|
1129 |
-
" <td>創傷後壓力症候群</td>\n",
|
1130 |
-
" <td>自我懷疑</td>\n",
|
1131 |
-
" <td>內心傷痛</td>\n",
|
1132 |
-
" <td>創傷癒後者</td>\n",
|
1133 |
-
" <td>單親父母</td>\n",
|
1134 |
-
" <td>成長經歷過困難的讀者</td>\n",
|
1135 |
-
" </tr>\n",
|
1136 |
-
" <tr>\n",
|
1137 |
-
" <th>676</th>\n",
|
1138 |
-
" <td>不是為了爭吵才跟你在一起: 如何在溝通中改善親密關係</td>\n",
|
1139 |
-
" <td>為什麼開始親密無間的兩個人,會在關係中越走越遠、越來越疏離?外人對你們羨慕不已,但其實是假性...</td>\n",
|
1140 |
-
" <td>https://www.eslite.com/product/100120106326824...</td>\n",
|
1141 |
-
" <td>焦慮</td>\n",
|
1142 |
-
" <td>疏離</td>\n",
|
1143 |
-
" <td>衝突</td>\n",
|
1144 |
-
" <td>兩性關係人士</td>\n",
|
1145 |
-
" <td>婚姻治療師或專家</td>\n",
|
1146 |
-
" <td>伴侶或夫妻</td>\n",
|
1147 |
-
" </tr>\n",
|
1148 |
-
" </tbody>\n",
|
1149 |
-
"</table>\n",
|
1150 |
-
"<p>677 rows × 9 columns</p>\n",
|
1151 |
-
"</div>"
|
1152 |
-
],
|
1153 |
-
"text/plain": [
|
1154 |
-
" 書名 \\\n",
|
1155 |
-
"0 這僅有一次的人生, 我不想說抱歉 \n",
|
1156 |
-
"1 我只是想分手而已: 親密殺人, 被深愛的男人殺死的女人們 \n",
|
1157 |
-
"2 輕鬆思考法: 培養靈活觀點的150個啟示 \n",
|
1158 |
-
"3 因為人類思維太僵化, 所以需要創新心理學: 心態革命, 大腦中的髮夾彎, 掀起你的思路風暴 \n",
|
1159 |
-
"4 人生心理學 \n",
|
1160 |
-
".. ... \n",
|
1161 |
-
"672 你想要的一切, 宇宙早已為你預備 \n",
|
1162 |
-
"673 妄想的力量: 迷信、儀式感與過度樂觀的非理性心理學 \n",
|
1163 |
-
"674 悲傷復原力: 一位心理學專家, 也是位失去愛女的母親, 透過復原力心理學, 走過分離崩解的悲傷 \n",
|
1164 |
-
"675 淬鍊幸福, 剛剛好的回憶練習 (限量贈暖心陪伴藏書卡) \n",
|
1165 |
-
"676 不是為了爭吵才跟你在一起: 如何在溝通中改善親密關係 \n",
|
1166 |
-
"\n",
|
1167 |
-
" 內容簡介 \\\n",
|
1168 |
-
"0 你走太快了,容易迷路,要等靈魂跟上來,才能走更遠的路。那些你想要做成的事情,你做成了的事情,... \n",
|
1169 |
-
"1 親密殺人不是約會暴力是整個社會必須全力阻止的連續殺人!只是想跟他分手的我,為何最後卻送了命?... \n",
|
1170 |
-
"2 本書特色150則啟示點醒沉浮於忙碌生活的現代人!篇幅短小、內容精闢,1分鐘打開新思維!擁有不... \n",
|
1171 |
-
"3 大腦中的髮夾彎,掀起你的思路風暴!從理性到感性,不同思考方式將會開啟新的視角、新的世界!逆向... \n",
|
1172 |
-
"4 找出人生發展的路向從來都不容易,無論你是臨近畢業的大專生,或是已在職場上打滾了好些年正在瓶頸... \n",
|
1173 |
-
".. ... \n",
|
1174 |
-
"672 宇宙會把最好的獻給你。如果你願意放下自我限制的信念,全然信任這股奇妙的力量,豐盛的人生自然會... \n",
|
1175 |
-
"673 妄想雖然可恥但是有用!亞馬遜讀者五星強推!最熱愛怪力亂神的美國心理學暢銷作家帶你重新認識幻想... \n",
|
1176 |
-
"674 面對至親至愛的離去,如果悲傷難免,我們可以做些什麼,度過這場巨大風暴?紐約時報、華爾街日報,... \n",
|
1177 |
-
"675 為什麼自己會突然情緒崩潰?從什麼時候開始,變得越來越少話?每當回憶起某件事時,就會止不住的落... \n",
|
1178 |
-
"676 為什麼開始親密無間的兩個人,會在關係中越走越遠、越來越疏離?外人對你們羨慕不已,但其實是假性... \n",
|
1179 |
-
"\n",
|
1180 |
-
" URL 形容詞1 形容詞2 \\\n",
|
1181 |
-
"0 https://www.eslite.com/product/100120106326824... 自我期許 自我反思 \n",
|
1182 |
-
"1 https://www.eslite.com/product/100120106326824... 心理創傷 暴力受暴經驗 \n",
|
1183 |
-
"2 https://www.eslite.com/product/100121372526824... 焦慮 孤獨 \n",
|
1184 |
-
"3 https://www.eslite.com/product/100122024826824... 焦慮 壓力 \n",
|
1185 |
-
"4 https://www.eslite.com/product/100121238026824... 生涯規劃 自我覺察 \n",
|
1186 |
-
".. ... ... ... \n",
|
1187 |
-
"672 https://www.eslite.com/product/100120176426824... 困惑 壓力 \n",
|
1188 |
-
"673 https://www.eslite.com/product/100120106326824... 妄想 心理假象 \n",
|
1189 |
-
"674 https://www.eslite.com/product/100121380726824... 喪親之痛 悲傷 \n",
|
1190 |
-
"675 https://www.eslite.com/product/100120303926824... 創傷後壓力症候群 自我懷疑 \n",
|
1191 |
-
"676 https://www.eslite.com/product/100120106326824... 焦慮 疏離 \n",
|
1192 |
-
"\n",
|
1193 |
-
" 形容詞3 角色1 角色2 角色3 \n",
|
1194 |
-
"0 人生目標 自我提升 人生感悟 內心成長 \n",
|
1195 |
-
"1 感情困境 法律系學生 社會工作者 性別平權運動者 \n",
|
1196 |
-
"2 成長 職場人 旅行愛好者 追求自我成長的人 \n",
|
1197 |
-
"3 抑鬱 好奇心旺盛的思考愛好者 希望提高日常解決問題技巧的人 渴望提升創新思維能力的人 \n",
|
1198 |
-
"4 人生意義 大學生 職場工作者 心理學研究者 \n",
|
1199 |
-
".. ... ... ... ... \n",
|
1200 |
-
"672 不滿 焦慮症患者 心理負荷過重者 靈性追求者 \n",
|
1201 |
-
"673 樂觀 心理學家 精神病患者家屬 普通大眾 \n",
|
1202 |
-
"674 復原力 親人失去 悲傷修復 心理健康 \n",
|
1203 |
-
"675 內心傷痛 創傷癒後者 單親父母 成長經歷過困難的讀者 \n",
|
1204 |
-
"676 衝突 兩性關係人士 婚姻治療師或專家 伴侶或夫妻 \n",
|
1205 |
-
"\n",
|
1206 |
-
"[677 rows x 9 columns]"
|
1207 |
-
]
|
1208 |
-
},
|
1209 |
-
"execution_count": 16,
|
1210 |
-
"metadata": {},
|
1211 |
-
"output_type": "execute_result"
|
1212 |
-
}
|
1213 |
-
],
|
1214 |
-
"source": [
|
1215 |
-
"df_bk"
|
1216 |
-
]
|
1217 |
-
},
|
1218 |
-
{
|
1219 |
-
"cell_type": "code",
|
1220 |
-
"execution_count": null,
|
1221 |
-
"id": "b88bb194-7064-4dcb-8907-b392d8f1e82f",
|
1222 |
-
"metadata": {},
|
1223 |
-
"outputs": [],
|
1224 |
-
"source": []
|
1225 |
-
}
|
1226 |
-
],
|
1227 |
-
"metadata": {
|
1228 |
-
"kernelspec": {
|
1229 |
-
"display_name": "Python 3 (ipykernel)",
|
1230 |
-
"language": "python",
|
1231 |
-
"name": "python3"
|
1232 |
-
},
|
1233 |
-
"language_info": {
|
1234 |
-
"codemirror_mode": {
|
1235 |
-
"name": "ipython",
|
1236 |
-
"version": 3
|
1237 |
-
},
|
1238 |
-
"file_extension": ".py",
|
1239 |
-
"mimetype": "text/x-python",
|
1240 |
-
"name": "python",
|
1241 |
-
"nbconvert_exporter": "python",
|
1242 |
-
"pygments_lexer": "ipython3",
|
1243 |
-
"version": "3.10.8"
|
1244 |
-
}
|
1245 |
-
},
|
1246 |
-
"nbformat": 4,
|
1247 |
-
"nbformat_minor": 5
|
1248 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|