Spaces:
Sleeping
Sleeping
cordwainersmith
commited on
Commit
·
277ab09
1
Parent(s):
01d7fe4
Add application file
Browse files
app.py
ADDED
@@ -0,0 +1,448 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
4 |
+
import time
|
5 |
+
import json
|
6 |
+
import pandas as pd
|
7 |
+
from datetime import datetime
|
8 |
+
import os
|
9 |
+
from typing import List, Dict, Tuple
|
10 |
+
import re
|
11 |
+
|
12 |
+
# Constants
|
13 |
+
MODELS = {
|
14 |
+
"GolemPII XLM-RoBERTa v1": "CordwainerSmith/GolemPII-xlm-roberta-v1",
|
15 |
+
}
|
16 |
+
|
17 |
+
|
18 |
+
ENTITY_COLORS = {
|
19 |
+
"PHONE_NUM": "#FF9999",
|
20 |
+
"ID_NUM": "#99FF99",
|
21 |
+
"CC_NUM": "#9999FF",
|
22 |
+
"BANK_ACCOUNT_NUM": "#FFFF99",
|
23 |
+
"FIRST_NAME": "#FF99FF",
|
24 |
+
"LAST_NAME": "#99FFFF",
|
25 |
+
"CITY": "#FFB366",
|
26 |
+
"STREET": "#B366FF",
|
27 |
+
"POSTAL_CODE": "#66FFB3",
|
28 |
+
"EMAIL": "#66B3FF",
|
29 |
+
"DATE": "#FFB3B3",
|
30 |
+
"CC_PROVIDER": "#B3FFB3",
|
31 |
+
}
|
32 |
+
|
33 |
+
EXAMPLE_SENTENCES = [
|
34 |
+
"שם מלא: תלמה אריאלי מספר תעודת זהות: 61453324-8 תאריך לידה: 15/09/1983 כתובת: ארלוזורוב 22 פתח תקווה מיקוד 2731711 אימייל: [email protected] טלפון: 054-8884771 בפגישה זו נדונו פתרונות טכנולוגיים חדשניים לשיפור תהליכי עבודה. המשתתף יתבקש להציג מצגת בנושא בפגישה הבאה אשר שילם ב 5326-1003-5299-5478 מסטרקארד עם הוראת קבע ל 11-77-352300",
|
35 |
+
]
|
36 |
+
|
37 |
+
MODEL_DETAILS = {
|
38 |
+
"name": "GolemPII - Hebrew PII Detection Model CordwainerSmith/GolemPII-v7-full",
|
39 |
+
"description": "This on-premise PII model is designed to automatically identify and mask sensitive information (PII) within Hebrew text data. It has been trained to recognize a wide range of PII entities, including names, addresses, phone numbers, financial information, and more.",
|
40 |
+
"base_model": "microsoft/mdeberta-v3-base",
|
41 |
+
"training_data": "Custom Hebrew PII dataset (size not specified)",
|
42 |
+
"detected_pii_entities": [
|
43 |
+
"FIRST_NAME",
|
44 |
+
"LAST_NAME",
|
45 |
+
"STREET",
|
46 |
+
"CITY",
|
47 |
+
"PHONE_NUM",
|
48 |
+
"EMAIL",
|
49 |
+
"ID_NUM",
|
50 |
+
"BANK_ACCOUNT_NUM",
|
51 |
+
"CC_NUM",
|
52 |
+
"CC_PROVIDER",
|
53 |
+
"DATE",
|
54 |
+
"POSTAL_CODE",
|
55 |
+
],
|
56 |
+
"training_details": {
|
57 |
+
"Training epochs": "5",
|
58 |
+
"Batch size": "32",
|
59 |
+
"Learning rate": "5e-5",
|
60 |
+
"Weight decay": "0.01",
|
61 |
+
"Training speed": "~2.19 it/s",
|
62 |
+
"Total training time": "2:08:26",
|
63 |
+
},
|
64 |
+
}
|
65 |
+
|
66 |
+
|
67 |
+
class PIIMaskingModel:
|
68 |
+
def __init__(self, model_name: str):
|
69 |
+
self.model_name = model_name
|
70 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name, token=HF_TOKEN)
|
71 |
+
self.model = AutoModelForTokenClassification.from_pretrained(
|
72 |
+
model_name, token=HF_TOKEN
|
73 |
+
)
|
74 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
75 |
+
self.model.to(self.device)
|
76 |
+
self.model.eval()
|
77 |
+
|
78 |
+
def process_text(
|
79 |
+
self, text: str
|
80 |
+
) -> Tuple[str, float, str, List[str], List[str], List[Dict]]:
|
81 |
+
start_time = time.time()
|
82 |
+
|
83 |
+
tokenized_inputs = self.tokenizer(
|
84 |
+
text,
|
85 |
+
truncation=True,
|
86 |
+
padding=False,
|
87 |
+
return_tensors="pt",
|
88 |
+
return_offsets_mapping=True,
|
89 |
+
add_special_tokens=True,
|
90 |
+
)
|
91 |
+
|
92 |
+
input_ids = tokenized_inputs.input_ids.to(self.device)
|
93 |
+
attention_mask = tokenized_inputs.attention_mask.to(self.device)
|
94 |
+
offset_mapping = tokenized_inputs["offset_mapping"][0].tolist()
|
95 |
+
|
96 |
+
# Handle special tokens
|
97 |
+
offset_mapping[0] = None # <s> token
|
98 |
+
offset_mapping[-1] = None # </s> token
|
99 |
+
|
100 |
+
with torch.no_grad():
|
101 |
+
outputs = self.model(input_ids=input_ids, attention_mask=attention_mask)
|
102 |
+
|
103 |
+
predictions = outputs.logits.argmax(dim=-1).cpu().numpy()
|
104 |
+
predicted_labels = [
|
105 |
+
self.model.config.id2label[label_id] for label_id in predictions[0]
|
106 |
+
]
|
107 |
+
tokens = self.tokenizer.convert_ids_to_tokens(input_ids[0])
|
108 |
+
|
109 |
+
masked_text, colored_text, privacy_masks = self.mask_pii_in_sentence(
|
110 |
+
tokens, predicted_labels, text, offset_mapping
|
111 |
+
)
|
112 |
+
processing_time = time.time() - start_time
|
113 |
+
|
114 |
+
return (
|
115 |
+
masked_text,
|
116 |
+
processing_time,
|
117 |
+
colored_text,
|
118 |
+
tokens,
|
119 |
+
predicted_labels,
|
120 |
+
privacy_masks,
|
121 |
+
)
|
122 |
+
|
123 |
+
def _find_entity_span(
|
124 |
+
self,
|
125 |
+
i: int,
|
126 |
+
labels: List[str],
|
127 |
+
tokens: List[str],
|
128 |
+
offset_mapping: List[Tuple[int, int]],
|
129 |
+
) -> Tuple[int, str, int]:
|
130 |
+
"""Find the end index and entity type for a span starting at index i"""
|
131 |
+
current_entity = labels[i][2:] if labels[i].startswith("B-") else labels[i][2:]
|
132 |
+
j = i + 1
|
133 |
+
last_valid_end = offset_mapping[i][1] if offset_mapping[i] else None
|
134 |
+
|
135 |
+
while j < len(tokens):
|
136 |
+
if offset_mapping[j] is None:
|
137 |
+
j += 1
|
138 |
+
continue
|
139 |
+
|
140 |
+
next_label = labels[j]
|
141 |
+
|
142 |
+
# Stop if we hit a new B- tag (except for non-spaced tokens)
|
143 |
+
if next_label.startswith("B-") and tokens[j].startswith("▁"):
|
144 |
+
break
|
145 |
+
|
146 |
+
# Stop if we hit a different entity type in I- tags
|
147 |
+
if next_label.startswith("I-") and next_label[2:] != current_entity:
|
148 |
+
break
|
149 |
+
|
150 |
+
# Continue if it's a continuation of the same entity
|
151 |
+
if next_label.startswith("I-") and next_label[2:] == current_entity:
|
152 |
+
last_valid_end = offset_mapping[j][1]
|
153 |
+
j += 1
|
154 |
+
# Continue if it's a non-spaced B- token
|
155 |
+
elif next_label.startswith("B-") and not tokens[j].startswith("▁"):
|
156 |
+
last_valid_end = offset_mapping[j][1]
|
157 |
+
j += 1
|
158 |
+
else:
|
159 |
+
break
|
160 |
+
|
161 |
+
return j, current_entity, last_valid_end
|
162 |
+
|
163 |
+
def mask_pii_in_sentence(
|
164 |
+
self,
|
165 |
+
tokens: List[str],
|
166 |
+
labels: List[str],
|
167 |
+
original_text: str,
|
168 |
+
offset_mapping: List[Tuple[int, int]],
|
169 |
+
) -> Tuple[str, str, List[Dict]]:
|
170 |
+
privacy_masks = []
|
171 |
+
current_pos = 0
|
172 |
+
masked_text_parts = []
|
173 |
+
colored_text_parts = []
|
174 |
+
|
175 |
+
i = 0
|
176 |
+
while i < len(tokens):
|
177 |
+
if offset_mapping[i] is None: # Skip special tokens
|
178 |
+
i += 1
|
179 |
+
continue
|
180 |
+
|
181 |
+
current_label = labels[i]
|
182 |
+
|
183 |
+
if current_label.startswith(("B-", "I-")):
|
184 |
+
start_char = offset_mapping[i][0]
|
185 |
+
|
186 |
+
# Find the complete entity span
|
187 |
+
next_pos, entity_type, last_valid_end = self._find_entity_span(
|
188 |
+
i, labels, tokens, offset_mapping
|
189 |
+
)
|
190 |
+
|
191 |
+
# Add any text before the entity
|
192 |
+
if current_pos < start_char:
|
193 |
+
text_before = original_text[current_pos:start_char]
|
194 |
+
masked_text_parts.append(text_before)
|
195 |
+
colored_text_parts.append(text_before)
|
196 |
+
|
197 |
+
# Extract and mask the entity
|
198 |
+
entity_value = original_text[start_char:last_valid_end]
|
199 |
+
mask = self._get_mask_for_entity(entity_type)
|
200 |
+
|
201 |
+
# Add to privacy masks
|
202 |
+
privacy_masks.append(
|
203 |
+
{
|
204 |
+
"label": entity_type,
|
205 |
+
"start": start_char,
|
206 |
+
"end": last_valid_end,
|
207 |
+
"value": entity_value,
|
208 |
+
"label_index": len(privacy_masks) + 1,
|
209 |
+
}
|
210 |
+
)
|
211 |
+
|
212 |
+
# Add masked text
|
213 |
+
masked_text_parts.append(mask)
|
214 |
+
|
215 |
+
# Add colored text
|
216 |
+
color = ENTITY_COLORS.get(entity_type, "#CCCCCC")
|
217 |
+
colored_text_parts.append(
|
218 |
+
f'<span style="background-color: {color}; padding: 2px; border-radius: 3px;">{mask}</span>'
|
219 |
+
)
|
220 |
+
|
221 |
+
current_pos = last_valid_end
|
222 |
+
i = next_pos
|
223 |
+
else:
|
224 |
+
if offset_mapping[i] is not None:
|
225 |
+
start_char = offset_mapping[i][0]
|
226 |
+
end_char = offset_mapping[i][1]
|
227 |
+
|
228 |
+
# Add any text for this token
|
229 |
+
if current_pos < end_char:
|
230 |
+
text_chunk = original_text[current_pos:end_char]
|
231 |
+
masked_text_parts.append(text_chunk)
|
232 |
+
colored_text_parts.append(text_chunk)
|
233 |
+
current_pos = end_char
|
234 |
+
i += 1
|
235 |
+
|
236 |
+
# Add any remaining text
|
237 |
+
if current_pos < len(original_text):
|
238 |
+
remaining_text = original_text[current_pos:]
|
239 |
+
masked_text_parts.append(remaining_text)
|
240 |
+
colored_text_parts.append(remaining_text)
|
241 |
+
|
242 |
+
return ("".join(masked_text_parts), "".join(colored_text_parts), privacy_masks)
|
243 |
+
|
244 |
+
def _get_mask_for_entity(self, entity_type: str) -> str:
|
245 |
+
"""Get the mask text for a given entity type"""
|
246 |
+
return {
|
247 |
+
"PHONE_NUM": "[טלפון]",
|
248 |
+
"ID_NUM": "[ת.ז]",
|
249 |
+
"CC_NUM": "[כרטיס אשראי]",
|
250 |
+
"BANK_ACCOUNT_NUM": "[חשבון בנק]",
|
251 |
+
"FIRST_NAME": "[שם פרטי]",
|
252 |
+
"LAST_NAME": "[שם משפחה]",
|
253 |
+
"CITY": "[עיר]",
|
254 |
+
"STREET": "[רחוב]",
|
255 |
+
"POSTAL_CODE": "[מיקוד]",
|
256 |
+
"EMAIL": "[אימייל]",
|
257 |
+
"DATE": "[תאריך]",
|
258 |
+
"CC_PROVIDER": "[ספק כרטיס אשראי]",
|
259 |
+
"BANK": "[בנק]",
|
260 |
+
}.get(entity_type, f"[{entity_type}]")
|
261 |
+
|
262 |
+
|
263 |
+
def save_results_to_file(results: Dict):
|
264 |
+
"""
|
265 |
+
Save processing results to a JSON file
|
266 |
+
"""
|
267 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
268 |
+
filename = f"pii_masking_results_{timestamp}.json"
|
269 |
+
|
270 |
+
with open(filename, "w", encoding="utf-8") as f:
|
271 |
+
json.dump(results, f, ensure_ascii=False, indent=2)
|
272 |
+
|
273 |
+
return filename
|
274 |
+
|
275 |
+
|
276 |
+
def main():
|
277 |
+
st.set_page_config(layout="wide")
|
278 |
+
st.title("🗿 GolemPII: Hebrew PII Masking Application 🗿")
|
279 |
+
|
280 |
+
# Add CSS styles
|
281 |
+
st.markdown(
|
282 |
+
"""
|
283 |
+
<style>
|
284 |
+
.rtl { direction: rtl; text-align: right; }
|
285 |
+
.entity-legend { padding: 5px; margin: 2px; border-radius: 3px; display: inline-block; }
|
286 |
+
.masked-text {
|
287 |
+
direction: rtl;
|
288 |
+
text-align: right;
|
289 |
+
line-height: 2;
|
290 |
+
padding: 10px;
|
291 |
+
background-color: #f6f8fa;
|
292 |
+
border-radius: 5px;
|
293 |
+
color: black;
|
294 |
+
white-space: pre-wrap;
|
295 |
+
}
|
296 |
+
/* Red headers for sections */
|
297 |
+
.main h3 {
|
298 |
+
color: #d73a49;
|
299 |
+
margin-bottom: 10px;
|
300 |
+
}
|
301 |
+
/* Styles for the model details sidebar */
|
302 |
+
.model-details-sidebar h2 {
|
303 |
+
margin-top: 0;
|
304 |
+
}
|
305 |
+
.model-details-sidebar table {
|
306 |
+
width: 100%;
|
307 |
+
border-collapse: collapse;
|
308 |
+
}
|
309 |
+
.model-details-sidebar td, .model-details-sidebar th {
|
310 |
+
padding: 8px;
|
311 |
+
border: 1px solid #ddd;
|
312 |
+
text-align: left;
|
313 |
+
}
|
314 |
+
</style>
|
315 |
+
""",
|
316 |
+
unsafe_allow_html=True,
|
317 |
+
)
|
318 |
+
|
319 |
+
# Sidebar configuration
|
320 |
+
st.sidebar.header("Configuration")
|
321 |
+
selected_model = st.sidebar.selectbox("Select Model", list(MODELS.keys()))
|
322 |
+
show_json = st.sidebar.checkbox("Show JSON Output", value=True)
|
323 |
+
run_all_models = st.sidebar.checkbox("Run All Models")
|
324 |
+
|
325 |
+
# Display Model Details in Sidebar
|
326 |
+
st.sidebar.markdown(
|
327 |
+
f"""
|
328 |
+
<div class="model-details-sidebar">
|
329 |
+
<h2>Model Details: {MODEL_DETAILS['name']}</h2>
|
330 |
+
<p>{MODEL_DETAILS['description']}</p>
|
331 |
+
<table>
|
332 |
+
<tr><td>Base Model:</td><td>{MODEL_DETAILS['base_model']}</td></tr>
|
333 |
+
<tr><td>Training Data:</td><td>{MODEL_DETAILS['training_data']}</td></tr>
|
334 |
+
</table>
|
335 |
+
<h3>Detected PII Entities</h3>
|
336 |
+
<ul>
|
337 |
+
{" ".join([f'<li><span class="entity-badge" style="background-color: {ENTITY_COLORS.get(entity, "#CCCCCC")}; padding: 3px 5px; border-radius: 3px; margin-right: 5px;">{entity}</span></li>' for entity in MODEL_DETAILS['detected_pii_entities']])}
|
338 |
+
</ul>
|
339 |
+
</div>
|
340 |
+
""",
|
341 |
+
unsafe_allow_html=True,
|
342 |
+
)
|
343 |
+
|
344 |
+
# Text input
|
345 |
+
text_input = st.text_area(
|
346 |
+
"Enter text to mask (separate multiple texts with commas):",
|
347 |
+
value="\n".join(EXAMPLE_SENTENCES),
|
348 |
+
height=200,
|
349 |
+
)
|
350 |
+
|
351 |
+
# Process button
|
352 |
+
if st.button("Process Text"):
|
353 |
+
texts = [text.strip() for text in text_input.split(",") if text.strip()]
|
354 |
+
|
355 |
+
if run_all_models:
|
356 |
+
all_results = {}
|
357 |
+
progress_bar = st.progress(0)
|
358 |
+
|
359 |
+
for idx, (model_name, model_path) in enumerate(MODELS.items()):
|
360 |
+
st.subheader(f"Results for {model_name}")
|
361 |
+
model = PIIMaskingModel(model_path)
|
362 |
+
model_results = {}
|
363 |
+
|
364 |
+
for text_idx, text in enumerate(texts):
|
365 |
+
(
|
366 |
+
masked_text,
|
367 |
+
processing_time,
|
368 |
+
colored_text,
|
369 |
+
tokens,
|
370 |
+
predicted_labels,
|
371 |
+
privacy_masks,
|
372 |
+
) = model.process_text(text)
|
373 |
+
model_results[f"text_{text_idx+1}"] = {
|
374 |
+
"original": text,
|
375 |
+
"masked": masked_text,
|
376 |
+
"processing_time": processing_time,
|
377 |
+
"privacy_mask": privacy_masks,
|
378 |
+
"span_labels": [
|
379 |
+
[m["start"], m["end"], m["label"]] for m in privacy_masks
|
380 |
+
],
|
381 |
+
}
|
382 |
+
|
383 |
+
all_results[model_name] = model_results
|
384 |
+
progress_bar.progress((idx + 1) / len(MODELS))
|
385 |
+
|
386 |
+
# Save and display results
|
387 |
+
filename = save_results_to_file(all_results)
|
388 |
+
st.success(f"Results saved to {filename}")
|
389 |
+
|
390 |
+
# Show comparison table
|
391 |
+
comparison_data = []
|
392 |
+
for model_name, results in all_results.items():
|
393 |
+
avg_time = sum(
|
394 |
+
text_data["processing_time"] for text_data in results.values()
|
395 |
+
) / len(results)
|
396 |
+
comparison_data.append(
|
397 |
+
{"Model": model_name, "Avg Processing Time": f"{avg_time:.3f}s"}
|
398 |
+
)
|
399 |
+
|
400 |
+
st.subheader("Model Comparison")
|
401 |
+
st.table(pd.DataFrame(comparison_data))
|
402 |
+
|
403 |
+
else:
|
404 |
+
# Process with single selected model
|
405 |
+
model = PIIMaskingModel(MODELS[selected_model])
|
406 |
+
|
407 |
+
for text in texts:
|
408 |
+
st.markdown("### Original Text", unsafe_allow_html=True)
|
409 |
+
st.markdown(f'<div class="rtl">{text}</div>', unsafe_allow_html=True)
|
410 |
+
|
411 |
+
(
|
412 |
+
masked_text,
|
413 |
+
processing_time,
|
414 |
+
colored_text,
|
415 |
+
tokens,
|
416 |
+
predicted_labels,
|
417 |
+
privacy_masks,
|
418 |
+
) = model.process_text(text)
|
419 |
+
|
420 |
+
st.markdown("### Masked Text", unsafe_allow_html=True)
|
421 |
+
st.markdown(
|
422 |
+
f'<div class="masked-text">{colored_text}</div>',
|
423 |
+
unsafe_allow_html=True,
|
424 |
+
)
|
425 |
+
|
426 |
+
st.markdown(f"Processing Time: {processing_time:.3f} seconds")
|
427 |
+
|
428 |
+
if show_json:
|
429 |
+
st.json(
|
430 |
+
{
|
431 |
+
"original": text,
|
432 |
+
"masked": masked_text,
|
433 |
+
"processing_time": processing_time,
|
434 |
+
"tokens": tokens,
|
435 |
+
"token_classes": predicted_labels,
|
436 |
+
"privacy_mask": privacy_masks,
|
437 |
+
"span_labels": [
|
438 |
+
[m["start"], m["end"], m["label"]]
|
439 |
+
for m in privacy_masks
|
440 |
+
],
|
441 |
+
}
|
442 |
+
)
|
443 |
+
|
444 |
+
st.markdown("---")
|
445 |
+
|
446 |
+
|
447 |
+
if __name__ == "__main__":
|
448 |
+
main()
|