Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
cordwainersmith
commited on
Commit
•
98a427a
1
Parent(s):
5584918
Add token
Browse files- app.py +26 -19
- requirements.txt +2 -1
app.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
import streamlit as st
|
|
|
2 |
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
3 |
import time
|
4 |
import json
|
@@ -34,10 +35,10 @@ EXAMPLE_SENTENCES = [
|
|
34 |
]
|
35 |
|
36 |
MODEL_DETAILS = {
|
37 |
-
"name": "GolemPII - Hebrew PII Detection Model
|
38 |
-
"description": "This
|
39 |
-
"base_model": "
|
40 |
-
"training_data": "Custom Hebrew PII dataset
|
41 |
"detected_pii_entities": [
|
42 |
"FIRST_NAME",
|
43 |
"LAST_NAME",
|
@@ -52,13 +53,16 @@ MODEL_DETAILS = {
|
|
52 |
"DATE",
|
53 |
"POSTAL_CODE",
|
54 |
],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
"training_details": {
|
56 |
-
"Training
|
57 |
-
|
58 |
-
"Learning rate": "5e-5",
|
59 |
-
"Weight decay": "0.01",
|
60 |
-
"Training speed": "~2.19 it/s",
|
61 |
-
"Total training time": "2:08:26",
|
62 |
},
|
63 |
}
|
64 |
|
@@ -66,13 +70,16 @@ MODEL_DETAILS = {
|
|
66 |
class PIIMaskingModel:
|
67 |
def __init__(self, model_name: str):
|
68 |
self.model_name = model_name
|
69 |
-
hf_token = st.secrets["hf_token"]
|
70 |
self.tokenizer = AutoTokenizer.from_pretrained(
|
71 |
model_name, use_auth_token=hf_token
|
72 |
)
|
73 |
self.model = AutoModelForTokenClassification.from_pretrained(
|
74 |
model_name, use_auth_token=hf_token
|
75 |
)
|
|
|
|
|
|
|
76 |
|
77 |
def process_text(
|
78 |
self, text: str
|
@@ -83,23 +90,23 @@ class PIIMaskingModel:
|
|
83 |
text,
|
84 |
truncation=True,
|
85 |
padding=False,
|
86 |
-
return_tensors="
|
87 |
return_offsets_mapping=True,
|
88 |
add_special_tokens=True,
|
89 |
)
|
90 |
|
91 |
-
input_ids = tokenized_inputs.input_ids
|
92 |
-
attention_mask = tokenized_inputs.attention_mask
|
93 |
offset_mapping = tokenized_inputs["offset_mapping"][0].tolist()
|
94 |
|
95 |
# Handle special tokens
|
96 |
offset_mapping[0] = None # <s> token
|
97 |
offset_mapping[-1] = None # </s> token
|
98 |
|
99 |
-
|
100 |
-
|
101 |
|
102 |
-
predictions = outputs.logits.argmax(dim=-1)
|
103 |
predicted_labels = [
|
104 |
self.model.config.id2label[label_id] for label_id in predictions[0]
|
105 |
]
|
@@ -139,7 +146,7 @@ class PIIMaskingModel:
|
|
139 |
next_label = labels[j]
|
140 |
|
141 |
# Stop if we hit a new B- tag (except for non-spaced tokens)
|
142 |
-
if next_label.startswith("B-") and tokens[j].startswith("
|
143 |
break
|
144 |
|
145 |
# Stop if we hit a different entity type in I- tags
|
@@ -151,7 +158,7 @@ class PIIMaskingModel:
|
|
151 |
last_valid_end = offset_mapping[j][1]
|
152 |
j += 1
|
153 |
# Continue if it's a non-spaced B- token
|
154 |
-
elif next_label.startswith("B-") and not tokens[j].startswith("
|
155 |
last_valid_end = offset_mapping[j][1]
|
156 |
j += 1
|
157 |
else:
|
|
|
1 |
import streamlit as st
|
2 |
+
import torch
|
3 |
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
4 |
import time
|
5 |
import json
|
|
|
35 |
]
|
36 |
|
37 |
MODEL_DETAILS = {
|
38 |
+
"name": "GolemPII-xlm-roberta-v1 - Hebrew PII Detection Model",
|
39 |
+
"description": "This model is specifically designed to identify and categorize Personally Identifiable Information (PII) within Hebrew text. It leverages the powerful XLM-RoBERTa base, fine-tuned with a curated Hebrew PII dataset, making it adept at token classification tasks tailored for Hebrew.",
|
40 |
+
"base_model": "xlm-roberta-base",
|
41 |
+
"training_data": "Custom Hebrew PII dataset",
|
42 |
"detected_pii_entities": [
|
43 |
"FIRST_NAME",
|
44 |
"LAST_NAME",
|
|
|
53 |
"DATE",
|
54 |
"POSTAL_CODE",
|
55 |
],
|
56 |
+
"performance_metrics": {
|
57 |
+
"Loss": 0.000729,
|
58 |
+
"Precision": 0.9982,
|
59 |
+
"Recall": 0.9982,
|
60 |
+
"F1-Score": 0.9982,
|
61 |
+
"Accuracy": 0.999795,
|
62 |
+
},
|
63 |
"training_details": {
|
64 |
+
"Training language": "Hebrew",
|
65 |
+
# Add other relevant training details if available
|
|
|
|
|
|
|
|
|
66 |
},
|
67 |
}
|
68 |
|
|
|
70 |
class PIIMaskingModel:
|
71 |
def __init__(self, model_name: str):
|
72 |
self.model_name = model_name
|
73 |
+
hf_token = st.secrets["hf_token"]
|
74 |
self.tokenizer = AutoTokenizer.from_pretrained(
|
75 |
model_name, use_auth_token=hf_token
|
76 |
)
|
77 |
self.model = AutoModelForTokenClassification.from_pretrained(
|
78 |
model_name, use_auth_token=hf_token
|
79 |
)
|
80 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
81 |
+
self.model.to(self.device)
|
82 |
+
self.model.eval()
|
83 |
|
84 |
def process_text(
|
85 |
self, text: str
|
|
|
90 |
text,
|
91 |
truncation=True,
|
92 |
padding=False,
|
93 |
+
return_tensors="pt",
|
94 |
return_offsets_mapping=True,
|
95 |
add_special_tokens=True,
|
96 |
)
|
97 |
|
98 |
+
input_ids = tokenized_inputs.input_ids.to(self.device)
|
99 |
+
attention_mask = tokenized_inputs.attention_mask.to(self.device)
|
100 |
offset_mapping = tokenized_inputs["offset_mapping"][0].tolist()
|
101 |
|
102 |
# Handle special tokens
|
103 |
offset_mapping[0] = None # <s> token
|
104 |
offset_mapping[-1] = None # </s> token
|
105 |
|
106 |
+
with torch.no_grad():
|
107 |
+
outputs = self.model(input_ids=input_ids, attention_mask=attention_mask)
|
108 |
|
109 |
+
predictions = outputs.logits.argmax(dim=-1).cpu().numpy()
|
110 |
predicted_labels = [
|
111 |
self.model.config.id2label[label_id] for label_id in predictions[0]
|
112 |
]
|
|
|
146 |
next_label = labels[j]
|
147 |
|
148 |
# Stop if we hit a new B- tag (except for non-spaced tokens)
|
149 |
+
if next_label.startswith("B-") and tokens[j].startswith("▁"):
|
150 |
break
|
151 |
|
152 |
# Stop if we hit a different entity type in I- tags
|
|
|
158 |
last_valid_end = offset_mapping[j][1]
|
159 |
j += 1
|
160 |
# Continue if it's a non-spaced B- token
|
161 |
+
elif next_label.startswith("B-") and not tokens[j].startswith("▁"):
|
162 |
last_valid_end = offset_mapping[j][1]
|
163 |
j += 1
|
164 |
else:
|
requirements.txt
CHANGED
@@ -1,2 +1,3 @@
|
|
1 |
streamlit
|
2 |
-
transformers
|
|
|
|
1 |
streamlit
|
2 |
+
transformers
|
3 |
+
torch
|