Spaces:
Runtime error
Runtime error
Corey Morris
Refactoring. Moved ResultDataProcessor class to a separate file to make it easier to use with experimentation in a jupyter notebook
843a5ef
import streamlit as st | |
import pandas as pd | |
import plotly.express as px | |
from result_data_processor import ResultDataProcessor | |
data_provider = ResultDataProcessor() | |
st.title('Model Evaluation Results including MMLU by task') | |
filters = st.checkbox('Select Models and Evaluations') | |
# Create defaults for selected columns and models | |
selected_columns = data_provider.data.columns.tolist() | |
selected_models = data_provider.data.index.tolist() | |
if filters: | |
# Create checkboxes for each column | |
selected_columns = st.multiselect( | |
'Select Columns', | |
data_provider.data.columns.tolist(), | |
default=selected_columns | |
) | |
selected_models = st.multiselect( | |
'Select Models', | |
data_provider.data.index.tolist(), | |
default=selected_models | |
) | |
# Get the filtered data | |
st.header('Sortable table') | |
filtered_data = data_provider.get_data(selected_models) | |
# sort the table by the MMLU_average column | |
filtered_data = filtered_data.sort_values(by=['MMLU_average'], ascending=False) | |
st.dataframe(filtered_data[selected_columns]) | |
# CSV download | |
csv = filtered_data.to_csv(index=True) | |
st.download_button( | |
label="Download data as CSV", | |
data=csv, | |
file_name="model_evaluation_results.csv", | |
mime="text/csv", | |
) | |
def create_plot(df, arc_column, moral_column, models=None): | |
if models is not None: | |
df = df[df.index.isin(models)] | |
plot_data = pd.DataFrame({ | |
'Model': df.index, | |
arc_column: df[arc_column], | |
moral_column: df[moral_column], | |
}) | |
plot_data['color'] = 'purple' | |
fig = px.scatter(plot_data, x=arc_column, y=moral_column, color='color', hover_data=['Model'], trendline="ols") | |
fig.update_layout(showlegend=False, | |
xaxis_title=arc_column, | |
yaxis_title=moral_column, | |
xaxis = dict(), | |
yaxis = dict()) | |
return fig | |
st.header('Custom scatter plots') | |
selected_x_column = st.selectbox('Select x-axis', filtered_data.columns.tolist(), index=0) | |
selected_y_column = st.selectbox('Select y-axis', filtered_data.columns.tolist(), index=1) | |
if selected_x_column != selected_y_column: # Avoid creating a plot with the same column on both axes | |
fig = create_plot(filtered_data, selected_x_column, selected_y_column) | |
st.plotly_chart(fig) | |
else: | |
st.write("Please select different columns for the x and y axes.") | |
st.header('Overall evaluation comparisons') | |
fig = create_plot(filtered_data, 'arc:challenge|25', 'hellaswag|10') | |
st.plotly_chart(fig) | |
fig = create_plot(filtered_data, 'arc:challenge|25', 'MMLU_average') | |
st.plotly_chart(fig) | |
fig = create_plot(filtered_data, 'hellaswag|10', 'MMLU_average') | |
st.plotly_chart(fig) | |
st.header('Top 50 models on MMLU_average') | |
top_50 = filtered_data.nlargest(50, 'MMLU_average') | |
fig = create_plot(top_50, 'arc:challenge|25', 'MMLU_average') | |
st.plotly_chart(fig) | |
st.header('Moral Reasoning') | |
fig = create_plot(filtered_data, 'arc:challenge|25', 'MMLU_moral_scenarios') | |
st.plotly_chart(fig) | |
fig = create_plot(filtered_data, 'MMLU_moral_disputes', 'MMLU_moral_scenarios') | |
st.plotly_chart(fig) | |
fig = create_plot(filtered_data, 'MMLU_average', 'MMLU_moral_scenarios') | |
st.plotly_chart(fig) | |
fig = px.histogram(filtered_data, x="MMLU_moral_scenarios", marginal="rug", hover_data=filtered_data.columns) | |
st.plotly_chart(fig) | |
fig = px.histogram(filtered_data, x="MMLU_moral_disputes", marginal="rug", hover_data=filtered_data.columns) | |
st.plotly_chart(fig) | |