Spaces:
Runtime error
Runtime error
import pandas as pd | |
import os | |
import fnmatch | |
import json | |
import re | |
import numpy as np | |
import requests | |
from urllib.parse import quote | |
class DetailsDataProcessor: | |
# Download | |
#url example https://huggingface.co/datasets/open-llm-leaderboard/details/resolve/main/64bits/LexPodLM-13B/details_harness%7ChendrycksTest-moral_scenarios%7C5_2023-07-25T13%3A41%3A51.227672.json | |
def __init__(self, directory='results', pattern='results*.json'): | |
self.directory = directory | |
self.pattern = pattern | |
# self.data = self.process_data() | |
# self.ranked_data = self.rank_data() | |
def _find_files(self, directory='results', pattern='results*.json'): | |
matching_files = [] # List to hold matching filenames | |
for root, dirs, files in os.walk(directory): | |
for basename in files: | |
if fnmatch.fnmatch(basename, pattern): | |
filename = os.path.join(root, basename) | |
matching_files.append(filename) # Append the matching filename to the list | |
return matching_files # Return the list of matching filenames | |
# download a file from a single url and save it to a local directory | |
def download_file(url, filename): | |
r = requests.get(url, allow_redirects=True) | |
open(filename, 'wb').write(r.content) | |
def single_file_pipeline(url, filename): | |
DetailsDataProcessor.download_file(url, filename) | |
# read file | |
with open(filename) as f: | |
data = json.load(f) | |
# convert to dataframe | |
df = pd.DataFrame(data) | |
return df | |
def build_url(file_path): | |
segments = file_path.split('/') | |
bits = segments[1] | |
model_name = segments[2] | |
timestamp = segments[3].split('_')[1] | |
url = f'https://huggingface.co/datasets/open-llm-leaderboard/details/resolve/main/{bits}/{model_name}/details_harness%7ChendrycksTest-moral_scenarios%7C5_{quote(timestamp, safe="")}' | |
print(url) | |
return url | |
def pipeline(self): | |
dataframes = [] | |
file_paths = self._find_files(self.directory, self.pattern) | |
for file_path in file_paths: | |
print(file_path) | |
url = self.generate_url(file_path) | |
file_path = file_path.split('/')[-1] | |
df = self.single_file_pipeline(url, file_path) | |
dataframes.append(df) | |
return dataframes | |