Spaces:
Runtime error
Runtime error
File size: 8,731 Bytes
7324de2 4464e12 1872449 7324de2 1872449 073bbf5 0e3c4dd 073bbf5 4464e12 7324de2 1872449 7324de2 0e3c4dd 073bbf5 0e3c4dd 073bbf5 4464e12 7324de2 1872449 7324de2 1872449 7324de2 4464e12 0de7b75 7324de2 1872449 7324de2 1872449 7324de2 0fab6d4 7324de2 073bbf5 7324de2 0fab6d4 7324de2 0fab6d4 7324de2 0fab6d4 7324de2 0de7b75 7324de2 0de7b75 7324de2 96b0255 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
import gradio as gr
import requests
import json
import threading
import os
import datetime
from requests.exceptions import RequestException
stop_generation = threading.Event()
API_URL = os.environ.get('API_URL')
API_KEY = os.environ.get('API_KEY')
headers = {
"Authorization": f"Bearer {API_KEY}",
"Content-Type": "application/json"
}
session = requests.Session()
DEFAULT_PARAMS = {
"temperature": 0.8,
"top_p": 0.95,
"top_k": 40,
"frequency_penalty": 0,
"presence_penalty": 0,
"repetition_penalty": 1.1,
"max_tokens": 512
}
def get_timestamp():
return datetime.datetime.now().strftime("%H:%M:%S")
def predict(message, history, system_prompt, temperature, top_p, top_k, frequency_penalty, presence_penalty, repetition_penalty, max_tokens):
global stop_generation, session
stop_generation.clear()
history_format = [{"role": "system", "content": system_prompt}]
for human, assistant in history:
history_format.append({"role": "user", "content": human})
if assistant:
history_format.append({"role": "assistant", "content": assistant})
history_format.append({"role": "user", "content": message})
if not message.startswith(('*', '"')):
print(f"<|system|> {system_prompt}")
print(f"{get_timestamp()} <|user|> {message}")
current_params = {
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"frequency_penalty": frequency_penalty,
"presence_penalty": presence_penalty,
"repetition_penalty": repetition_penalty,
"max_tokens": max_tokens
}
non_default_params = {k: v for k, v in current_params.items() if v != DEFAULT_PARAMS[k]}
if non_default_params and not message.startswith(('*', '"')):
for param, value in non_default_params.items():
print(f"{param}={value}")
data = {
"model": "meta-llama/Meta-Llama-3.1-405B-Instruct",
"messages": history_format,
"stream": True,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"frequency_penalty": frequency_penalty,
"presence_penalty": presence_penalty,
"repetition_penalty": repetition_penalty,
"max_tokens": max_tokens
}
try:
with session.post(API_URL, headers=headers, data=json.dumps(data), stream=True) as response:
partial_message = ""
for line in response.iter_lines():
if stop_generation.is_set():
response.close()
break
if line:
line = line.decode('utf-8')
if line.startswith("data: "):
if line.strip() == "data: [DONE]":
break
try:
json_data = json.loads(line[6:])
if 'choices' in json_data and json_data['choices']:
content = json_data['choices'][0]['delta'].get('content', '')
if content:
partial_message += content
yield partial_message
except json.JSONDecodeError:
continue
if partial_message:
yield partial_message
except RequestException as e:
print(f"Request error: {e}")
yield f"An error occurred: {str(e)}"
def import_chat(custom_format_string):
try:
sections = custom_format_string.split('<|')
imported_history = []
system_prompt = ""
for section in sections:
if section.startswith('system|>'):
system_prompt = section.replace('system|>', '').strip()
elif section.startswith('user|>'):
user_message = section.replace('user|>', '').strip()
imported_history.append([user_message, None])
elif section.startswith('assistant|>'):
assistant_message = section.replace('assistant|>', '').strip()
if imported_history:
imported_history[-1][1] = assistant_message
else:
imported_history.append(["", assistant_message])
return imported_history, system_prompt
except Exception as e:
print(f"Error importing chat: {e}")
return None, None
def export_chat(history, system_prompt):
export_data = f"<|system|> {system_prompt}\n\n"
if history is not None:
for user_msg, assistant_msg in history:
export_data += f"<|user|> {user_msg}\n\n"
if assistant_msg:
export_data += f"<|assistant|> {assistant_msg}\n\n"
return export_data
def stop_generation_func():
global stop_generation, session
stop_generation.set()
session.close()
session = requests.Session()
with gr.Blocks(theme='gradio/monochrome') as demo:
with gr.Row():
with gr.Column(scale=2):
chatbot = gr.Chatbot(value=[])
msg = gr.Textbox(label="Message")
with gr.Row():
clear = gr.Button("Clear")
regenerate = gr.Button("Regenerate")
stop_btn = gr.Button("Stop")
with gr.Row():
with gr.Column(scale=4):
import_textbox = gr.Textbox(label="Import textbox", lines=5)
with gr.Column(scale=1):
export_button = gr.Button("Export Chat")
import_button = gr.Button("Import Chat")
with gr.Column(scale=1):
system_prompt = gr.Textbox("", label="System Prompt", lines=5)
temperature = gr.Slider(0, 2, value=0.8, step=0.01, label="Temperature")
top_p = gr.Slider(0, 1, value=0.95, step=0.01, label="Top P")
top_k = gr.Slider(1, 500, value=40, step=1, label="Top K")
frequency_penalty = gr.Slider(-2, 2, value=0, step=0.1, label="Frequency Penalty")
presence_penalty = gr.Slider(-2, 2, value=0, step=0.1, label="Presence Penalty")
repetition_penalty = gr.Slider(0.01, 5, value=1.1, step=0.01, label="Repetition Penalty")
max_tokens = gr.Slider(1, 4096, value=512, step=1, label="Max Output (max_tokens)")
def user(user_message, history):
history = history or []
return "", history + [[user_message, None]]
def bot(history, system_prompt, temperature, top_p, top_k, frequency_penalty, presence_penalty, repetition_penalty, max_tokens):
global stop_generation
history = history or []
if not history:
return history
user_message = history[-1][0]
bot_message = predict(user_message, history[:-1], system_prompt, temperature, top_p, top_k, frequency_penalty, presence_penalty, repetition_penalty, max_tokens)
history[-1][1] = ""
for chunk in bot_message:
if stop_generation.is_set():
history[-1][1] += " [Generation stopped]"
break
history[-1][1] = chunk
yield history
stop_generation.clear()
def regenerate_response(history, system_prompt, temperature, top_p, top_k, frequency_penalty, presence_penalty, repetition_penalty, max_tokens):
if history and len(history) > 0:
last_user_message = history[-1][0]
history[-1][1] = None
for new_history in bot(history, system_prompt, temperature, top_p, top_k, frequency_penalty, presence_penalty, repetition_penalty, max_tokens):
yield new_history
else:
yield []
def import_chat_wrapper(custom_format_string):
imported_history, imported_system_prompt = import_chat(custom_format_string)
return imported_history, imported_system_prompt
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
bot, [chatbot, system_prompt, temperature, top_p, top_k, frequency_penalty, presence_penalty, repetition_penalty, max_tokens], chatbot
)
clear.click(lambda: None, None, chatbot, queue=False)
regenerate.click(
regenerate_response,
[chatbot, system_prompt, temperature, top_p, top_k, frequency_penalty, presence_penalty, repetition_penalty, max_tokens],
chatbot
)
import_button.click(import_chat_wrapper, inputs=[import_textbox], outputs=[chatbot, system_prompt])
export_button.click(
export_chat,
inputs=[chatbot, system_prompt],
outputs=[import_textbox]
)
stop_btn.click(stop_generation_func, inputs=[], outputs=[])
if __name__ == "__main__":
demo.launch(debug=True) |