File size: 8,731 Bytes
7324de2
 
 
 
 
4464e12
1872449
7324de2
 
 
 
 
 
 
 
 
 
1872449
 
073bbf5
 
 
 
 
 
 
0e3c4dd
073bbf5
 
4464e12
 
 
7324de2
1872449
7324de2
 
 
 
 
 
 
 
 
0e3c4dd
 
 
073bbf5
 
 
 
 
 
 
 
 
 
 
 
 
0e3c4dd
073bbf5
 
4464e12
7324de2
 
 
 
 
 
 
 
 
 
 
 
 
1872449
 
 
 
 
 
7324de2
1872449
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7324de2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4464e12
0de7b75
 
 
 
 
7324de2
 
 
1872449
7324de2
1872449
 
7324de2
 
 
 
0fab6d4
7324de2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
073bbf5
7324de2
 
0fab6d4
7324de2
 
 
 
0fab6d4
 
 
7324de2
 
 
 
 
 
 
 
 
0fab6d4
7324de2
 
0de7b75
7324de2
 
 
 
 
0de7b75
7324de2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96b0255
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import gradio as gr
import requests
import json
import threading
import os
import datetime
from requests.exceptions import RequestException

stop_generation = threading.Event()
API_URL = os.environ.get('API_URL')
API_KEY = os.environ.get('API_KEY')

headers = {
    "Authorization": f"Bearer {API_KEY}",
    "Content-Type": "application/json"
}

session = requests.Session()

DEFAULT_PARAMS = {
    "temperature": 0.8,
    "top_p": 0.95,
    "top_k": 40,
    "frequency_penalty": 0,
    "presence_penalty": 0,
    "repetition_penalty": 1.1,
    "max_tokens": 512
}

def get_timestamp():
    return datetime.datetime.now().strftime("%H:%M:%S")

def predict(message, history, system_prompt, temperature, top_p, top_k, frequency_penalty, presence_penalty, repetition_penalty, max_tokens):
    global stop_generation, session
    stop_generation.clear()  

    history_format = [{"role": "system", "content": system_prompt}]
    for human, assistant in history:
        history_format.append({"role": "user", "content": human})
        if assistant:
            history_format.append({"role": "assistant", "content": assistant})
    history_format.append({"role": "user", "content": message})

    if not message.startswith(('*', '"')):
        print(f"<|system|> {system_prompt}")
        print(f"{get_timestamp()} <|user|> {message}")

    current_params = {
        "temperature": temperature,
        "top_p": top_p,
        "top_k": top_k,
        "frequency_penalty": frequency_penalty,
        "presence_penalty": presence_penalty,
        "repetition_penalty": repetition_penalty,
        "max_tokens": max_tokens
    }

    non_default_params = {k: v for k, v in current_params.items() if v != DEFAULT_PARAMS[k]}
    
    if non_default_params and not message.startswith(('*', '"')):
        for param, value in non_default_params.items():
            print(f"{param}={value}")

    data = {
        "model": "meta-llama/Meta-Llama-3.1-405B-Instruct",
        "messages": history_format,
        "stream": True,
        "temperature": temperature,
        "top_p": top_p,
        "top_k": top_k,
        "frequency_penalty": frequency_penalty,
        "presence_penalty": presence_penalty,
        "repetition_penalty": repetition_penalty,
        "max_tokens": max_tokens
    }

    try:
        with session.post(API_URL, headers=headers, data=json.dumps(data), stream=True) as response:
            partial_message = ""
            for line in response.iter_lines():
                if stop_generation.is_set():
                    response.close()
                    break
                if line:
                    line = line.decode('utf-8')
                    if line.startswith("data: "):
                        if line.strip() == "data: [DONE]":
                            break
                        try:
                            json_data = json.loads(line[6:])
                            if 'choices' in json_data and json_data['choices']:
                                content = json_data['choices'][0]['delta'].get('content', '')
                                if content:
                                    partial_message += content
                                    yield partial_message
                        except json.JSONDecodeError:
                            continue  

        if partial_message:
            yield partial_message

    except RequestException as e:
        print(f"Request error: {e}")
        yield f"An error occurred: {str(e)}"

def import_chat(custom_format_string):
    try:
        sections = custom_format_string.split('<|')

        imported_history = []
        system_prompt = ""

        for section in sections:
            if section.startswith('system|>'):
                system_prompt = section.replace('system|>', '').strip()
            elif section.startswith('user|>'):
                user_message = section.replace('user|>', '').strip()
                imported_history.append([user_message, None])
            elif section.startswith('assistant|>'):
                assistant_message = section.replace('assistant|>', '').strip()
                if imported_history:
                    imported_history[-1][1] = assistant_message
                else:
                    imported_history.append(["", assistant_message])

        return imported_history, system_prompt
    except Exception as e:
        print(f"Error importing chat: {e}")
        return None, None

def export_chat(history, system_prompt):
    export_data = f"<|system|> {system_prompt}\n\n"
    if history is not None:
        for user_msg, assistant_msg in history:
            export_data += f"<|user|> {user_msg}\n\n"
            if assistant_msg:
                export_data += f"<|assistant|> {assistant_msg}\n\n"
    return export_data

def stop_generation_func():
    global stop_generation, session
    stop_generation.set()
    session.close()  
    session = requests.Session()  

with gr.Blocks(theme='gradio/monochrome') as demo:
    with gr.Row():
        with gr.Column(scale=2):
            chatbot = gr.Chatbot(value=[])
            msg = gr.Textbox(label="Message")
            with gr.Row():
                clear = gr.Button("Clear")
                regenerate = gr.Button("Regenerate")
                stop_btn = gr.Button("Stop")
            with gr.Row():
                with gr.Column(scale=4):
                    import_textbox = gr.Textbox(label="Import textbox", lines=5)
                with gr.Column(scale=1):
                    export_button = gr.Button("Export Chat")
                    import_button = gr.Button("Import Chat")

        with gr.Column(scale=1):
            system_prompt = gr.Textbox("", label="System Prompt", lines=5)
            temperature = gr.Slider(0, 2, value=0.8, step=0.01, label="Temperature")
            top_p = gr.Slider(0, 1, value=0.95, step=0.01, label="Top P")
            top_k = gr.Slider(1, 500, value=40, step=1, label="Top K")
            frequency_penalty = gr.Slider(-2, 2, value=0, step=0.1, label="Frequency Penalty")
            presence_penalty = gr.Slider(-2, 2, value=0, step=0.1, label="Presence Penalty")
            repetition_penalty = gr.Slider(0.01, 5, value=1.1, step=0.01, label="Repetition Penalty")
            max_tokens = gr.Slider(1, 4096, value=512, step=1, label="Max Output (max_tokens)")

    def user(user_message, history):
        history = history or []
        return "", history + [[user_message, None]]

    def bot(history, system_prompt, temperature, top_p, top_k, frequency_penalty, presence_penalty, repetition_penalty, max_tokens):
        global stop_generation
        history = history or []
        if not history:
            return history
        user_message = history[-1][0]
        bot_message = predict(user_message, history[:-1], system_prompt, temperature, top_p, top_k, frequency_penalty, presence_penalty, repetition_penalty, max_tokens)
        history[-1][1] = ""
        for chunk in bot_message:
            if stop_generation.is_set():
                history[-1][1] += " [Generation stopped]"
                break
            history[-1][1] = chunk
            yield history
        stop_generation.clear()

    def regenerate_response(history, system_prompt, temperature, top_p, top_k, frequency_penalty, presence_penalty, repetition_penalty, max_tokens):
        if history and len(history) > 0:
            last_user_message = history[-1][0]
            history[-1][1] = None  
            for new_history in bot(history, system_prompt, temperature, top_p, top_k, frequency_penalty, presence_penalty, repetition_penalty, max_tokens):
                yield new_history
        else:
            yield []

    def import_chat_wrapper(custom_format_string):
        imported_history, imported_system_prompt = import_chat(custom_format_string)
        return imported_history, imported_system_prompt

    msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
        bot, [chatbot, system_prompt, temperature, top_p, top_k, frequency_penalty, presence_penalty, repetition_penalty, max_tokens], chatbot
    )

    clear.click(lambda: None, None, chatbot, queue=False)

    regenerate.click(
        regenerate_response,
        [chatbot, system_prompt, temperature, top_p, top_k, frequency_penalty, presence_penalty, repetition_penalty, max_tokens],
        chatbot
    )

    import_button.click(import_chat_wrapper, inputs=[import_textbox], outputs=[chatbot, system_prompt])

    export_button.click(
        export_chat,
        inputs=[chatbot, system_prompt],
        outputs=[import_textbox]
    )

    stop_btn.click(stop_generation_func, inputs=[], outputs=[])

if __name__ == "__main__":
    demo.launch(debug=True)