Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- requirements.txt +4 -0
- server.py +25 -0
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# requirements.txt
|
2 |
+
gradio[mcp]
|
3 |
+
transformers
|
4 |
+
torch
|
server.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import pipeline
|
2 |
+
import gradio as gr
|
3 |
+
|
4 |
+
# Cargar modelo de Hugging Face
|
5 |
+
sentiment_pipeline = pipeline(
|
6 |
+
"sentiment-analysis",
|
7 |
+
model="distilbert-base-uncased-finetuned-sst-2-english"
|
8 |
+
)
|
9 |
+
|
10 |
+
def sentiment_analysis(text: str) -> dict:
|
11 |
+
result = sentiment_pipeline(text)[0]
|
12 |
+
return {
|
13 |
+
"sentiment": result["label"],
|
14 |
+
"confidence": round(result["score"], 4)
|
15 |
+
}
|
16 |
+
|
17 |
+
demo = gr.Interface(
|
18 |
+
fn=sentiment_analysis,
|
19 |
+
inputs=gr.Textbox(placeholder="Enter text..."),
|
20 |
+
outputs=gr.JSON(),
|
21 |
+
title="LLM-based Sentiment Analysis"
|
22 |
+
)
|
23 |
+
|
24 |
+
if __name__ == "__main__":
|
25 |
+
demo.launch(mcp_server=True)
|