Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -812,374 +812,24 @@ def process_video_file(video_file, analysis_types):
|
|
812 |
max_frames = int(fps * 10)
|
813 |
total_frames = min(int(cap.get(cv2.CAP_PROP_FRAME_COUNT)), max_frames)
|
814 |
|
815 |
-
#
|
816 |
-
|
817 |
-
|
818 |
-
|
819 |
-
#
|
820 |
-
output_fps = fps * 0.6
|
821 |
-
st.info(f"Output video will be slowed down to {output_fps:.1f} FPS (60% of original speed) for better visualization.")
|
822 |
-
|
823 |
-
# Create video writer with higher quality settings
|
824 |
-
try:
|
825 |
-
# Try XVID first (widely available)
|
826 |
-
fourcc = cv2.VideoWriter_fourcc(*'XVID')
|
827 |
-
except Exception:
|
828 |
-
# If that fails, try Motion JPEG
|
829 |
-
try:
|
830 |
-
fourcc = cv2.VideoWriter_fourcc(*'MJPG')
|
831 |
-
except Exception:
|
832 |
-
# Last resort - use uncompressed
|
833 |
-
fourcc = cv2.VideoWriter_fourcc(*'DIB ') # Uncompressed RGB
|
834 |
-
out = cv2.VideoWriter(output_path, fourcc, output_fps, (width, height), isColor=True)
|
835 |
-
|
836 |
-
# Process every Nth frame to reduce API calls but increase from 10 to 5 for more detail
|
837 |
process_every_n_frames = 5
|
838 |
-
|
839 |
-
# Create a progress bar
|
840 |
-
progress_bar = st.progress(0)
|
841 |
-
status_text = st.empty()
|
842 |
-
|
843 |
-
# Enhanced statistics tracking
|
844 |
-
detection_stats = {
|
845 |
-
"objects": {},
|
846 |
-
"faces": 0,
|
847 |
-
"text_blocks": 0,
|
848 |
-
"labels": {},
|
849 |
-
# New advanced tracking
|
850 |
-
"object_tracking": {}, # Track object appearances by frame
|
851 |
-
"activity_metrics": [], # Track frame-to-frame differences
|
852 |
-
"scene_changes": [] # Track major scene transitions
|
853 |
-
}
|
854 |
-
|
855 |
-
# For scene change detection and motion tracking
|
856 |
-
previous_frame_gray = None
|
857 |
-
prev_points = None
|
858 |
lk_params = dict(winSize=(15, 15),
|
859 |
-
|
860 |
-
|
861 |
-
|
862 |
-
# Feature detection params for tracking
|
863 |
feature_params = dict(maxCorners=100,
|
864 |
-
|
865 |
-
|
866 |
-
|
|
|
867 |
|
868 |
-
|
869 |
-
frame_count = 0
|
870 |
-
while frame_count < max_frames: # Limit to 10 seconds
|
871 |
-
ret, frame = cap.read()
|
872 |
-
if not ret:
|
873 |
-
break
|
874 |
-
|
875 |
-
frame_count += 1
|
876 |
-
|
877 |
-
# Update progress
|
878 |
-
progress = int(frame_count / total_frames * 100)
|
879 |
-
progress_bar.progress(progress)
|
880 |
-
status_text.text(f"Processing frame {frame_count}/{total_frames} ({progress}%) - {frame_count/fps:.1f}s of 10s")
|
881 |
-
|
882 |
-
# Add timestamp to frame
|
883 |
-
cv2.putText(frame, f"Time: {frame_count/fps:.2f}s",
|
884 |
-
(10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 2)
|
885 |
-
|
886 |
-
# Activity detection and scene change detection
|
887 |
-
current_frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
888 |
-
current_frame_gray = cv2.GaussianBlur(current_frame_gray, (21, 21), 0)
|
889 |
-
|
890 |
-
if previous_frame_gray is not None:
|
891 |
-
# Calculate frame difference for activity detection
|
892 |
-
frame_diff = cv2.absdiff(current_frame_gray, previous_frame_gray)
|
893 |
-
_, thresh = cv2.threshold(frame_diff, 25, 255, cv2.THRESH_BINARY)
|
894 |
-
thresh = cv2.dilate(thresh, None, iterations=2)
|
895 |
-
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
896 |
-
|
897 |
-
# Better activity metric using contour area
|
898 |
-
activity_level = sum(cv2.contourArea(c) for c in contours) / (frame.shape[0] * frame.shape[1])
|
899 |
-
activity_level *= 100 # Convert to percentage
|
900 |
-
detection_stats["activity_metrics"].append((frame_count/fps, activity_level))
|
901 |
-
|
902 |
-
# Add optical flow for better motion tracking
|
903 |
-
if "Objects" in analysis_types and prev_points is not None:
|
904 |
-
# Calculate optical flow
|
905 |
-
next_points, status, _ = cv2.calcOpticalFlowPyrLK(previous_frame_gray,
|
906 |
-
current_frame_gray,
|
907 |
-
prev_points,
|
908 |
-
None,
|
909 |
-
**lk_params)
|
910 |
-
|
911 |
-
# Select good points
|
912 |
-
if next_points is not None:
|
913 |
-
good_new = next_points[status==1]
|
914 |
-
good_old = prev_points[status==1]
|
915 |
-
|
916 |
-
# Draw motion tracks
|
917 |
-
for i, (new, old) in enumerate(zip(good_new, good_old)):
|
918 |
-
a, b = new.ravel()
|
919 |
-
c, d = old.ravel()
|
920 |
-
# Draw motion lines
|
921 |
-
cv2.line(frame, (int(c), int(d)), (int(a), int(b)), (0, 255, 255), 2)
|
922 |
-
cv2.circle(frame, (int(a), int(b)), 3, (0, 255, 0), -1)
|
923 |
-
|
924 |
-
# Scene change detection using contour analysis for more robust results
|
925 |
-
if activity_level > scene_change_threshold:
|
926 |
-
detection_stats["scene_changes"].append(frame_count/fps)
|
927 |
-
# Mark scene change on frame
|
928 |
-
cv2.putText(frame, "SCENE CHANGE",
|
929 |
-
(width // 2 - 100, 50), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0, 255, 255), 2)
|
930 |
-
|
931 |
-
# Reset tracking points on scene change
|
932 |
-
prev_points = None
|
933 |
-
|
934 |
-
# Update tracking points periodically
|
935 |
-
if frame_count % 5 == 0 or prev_points is None or len(prev_points) < 10:
|
936 |
-
prev_points = cv2.goodFeaturesToTrack(current_frame_gray, **feature_params)
|
937 |
-
|
938 |
-
previous_frame_gray = current_frame_gray
|
939 |
-
|
940 |
-
# Process frames with Vision API
|
941 |
-
if frame_count % process_every_n_frames == 0:
|
942 |
-
try:
|
943 |
-
# Convert OpenCV frame to PIL Image for Vision API
|
944 |
-
pil_img = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
945 |
-
|
946 |
-
# Create vision image
|
947 |
-
img_byte_arr = io.BytesIO()
|
948 |
-
pil_img.save(img_byte_arr, format='PNG')
|
949 |
-
content = img_byte_arr.getvalue()
|
950 |
-
vision_image = vision.Image(content=content)
|
951 |
-
|
952 |
-
# Apply analysis based on selected types with enhanced detail
|
953 |
-
if "Objects" in analysis_types:
|
954 |
-
objects = client.object_localization(image=vision_image)
|
955 |
-
# Draw boxes around detected objects with enhanced info
|
956 |
-
for obj in objects.localized_object_annotations:
|
957 |
-
obj_name = obj.name
|
958 |
-
# Update basic stats
|
959 |
-
if obj_name in detection_stats["objects"]:
|
960 |
-
detection_stats["objects"][obj_name] += 1
|
961 |
-
else:
|
962 |
-
detection_stats["objects"][obj_name] = 1
|
963 |
-
|
964 |
-
# Enhanced object tracking
|
965 |
-
timestamp = frame_count/fps
|
966 |
-
if obj_name not in detection_stats["object_tracking"]:
|
967 |
-
detection_stats["object_tracking"][obj_name] = {
|
968 |
-
"first_seen": timestamp,
|
969 |
-
"last_seen": timestamp,
|
970 |
-
"frames_present": 1,
|
971 |
-
"timestamps": [timestamp]
|
972 |
-
}
|
973 |
-
else:
|
974 |
-
tracking = detection_stats["object_tracking"][obj_name]
|
975 |
-
tracking["frames_present"] += 1
|
976 |
-
tracking["last_seen"] = timestamp
|
977 |
-
tracking["timestamps"].append(timestamp)
|
978 |
-
|
979 |
-
# Calculate box coordinates
|
980 |
-
box = [(vertex.x * frame.shape[1], vertex.y * frame.shape[0])
|
981 |
-
for vertex in obj.bounding_poly.normalized_vertices]
|
982 |
-
box = np.array(box, np.int32).reshape((-1, 1, 2))
|
983 |
-
|
984 |
-
# Draw more noticeable box with thicker lines
|
985 |
-
cv2.polylines(frame, [box], True, (0, 255, 0), 3)
|
986 |
-
|
987 |
-
# Calculate box size for better placement of labels
|
988 |
-
x_min = min([p[0][0] for p in box])
|
989 |
-
y_min = min([p[0][1] for p in box])
|
990 |
-
|
991 |
-
# Draw filled box with opacity for better label visibility
|
992 |
-
overlay = frame.copy()
|
993 |
-
box_np = np.array(box)
|
994 |
-
hull = cv2.convexHull(box_np)
|
995 |
-
cv2.fillConvexPoly(overlay, hull, (0, 255, 0, 64))
|
996 |
-
# Apply overlay with transparency
|
997 |
-
alpha = 0.3
|
998 |
-
cv2.addWeighted(overlay, alpha, frame, 1 - alpha, 0, frame)
|
999 |
-
|
1000 |
-
# Enhanced label with confidence and border
|
1001 |
-
confidence = int(obj.score * 100)
|
1002 |
-
label_text = f"{obj.name}: {confidence}%"
|
1003 |
-
text_size = cv2.getTextSize(label_text, cv2.FONT_HERSHEY_SIMPLEX, 0.7, 2)[0]
|
1004 |
-
|
1005 |
-
# Create better text background with rounded rectangle
|
1006 |
-
text_bg_pts = np.array([
|
1007 |
-
[x_min, y_min - text_size[1] - 10],
|
1008 |
-
[x_min + text_size[0] + 10, y_min - text_size[1] - 10],
|
1009 |
-
[x_min + text_size[0] + 10, y_min],
|
1010 |
-
[x_min, y_min]
|
1011 |
-
], np.int32)
|
1012 |
-
|
1013 |
-
cv2.fillPoly(frame, [text_bg_pts], (0, 0, 0))
|
1014 |
-
cv2.putText(frame, label_text,
|
1015 |
-
(int(x_min) + 5, int(y_min) - 5),
|
1016 |
-
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2)
|
1017 |
-
|
1018 |
-
if "Face Detection" in analysis_types:
|
1019 |
-
faces = client.face_detection(image=vision_image)
|
1020 |
-
# Track statistics
|
1021 |
-
detection_stats["faces"] += len(faces.face_annotations)
|
1022 |
-
|
1023 |
-
for face in faces.face_annotations:
|
1024 |
-
vertices = face.bounding_poly.vertices
|
1025 |
-
points = [(vertex.x, vertex.y) for vertex in vertices]
|
1026 |
-
# Draw face box with thicker lines
|
1027 |
-
pts = np.array(points, np.int32).reshape((-1, 1, 2))
|
1028 |
-
cv2.polylines(frame, [pts], True, (0, 0, 255), 3)
|
1029 |
-
|
1030 |
-
# Enhanced face info visualization
|
1031 |
-
emotions = []
|
1032 |
-
if face.joy_likelihood >= 3:
|
1033 |
-
emotions.append("Joy")
|
1034 |
-
if face.anger_likelihood >= 3:
|
1035 |
-
emotions.append("Anger")
|
1036 |
-
if face.surprise_likelihood >= 3:
|
1037 |
-
emotions.append("Surprise")
|
1038 |
-
if face.sorrow_likelihood >= 3:
|
1039 |
-
emotions.append("Sorrow")
|
1040 |
-
|
1041 |
-
emotion_text = ", ".join(emotions) if emotions else "Neutral"
|
1042 |
-
x_min = min([p[0] for p in points])
|
1043 |
-
y_min = min([p[1] for p in points])
|
1044 |
-
|
1045 |
-
# Add emotion gauge bar for better visualization
|
1046 |
-
emotions_map = {
|
1047 |
-
"Joy": (0, 255, 0), # Green
|
1048 |
-
"Anger": (0, 0, 255), # Red
|
1049 |
-
"Surprise": (255, 255, 0), # Yellow
|
1050 |
-
"Sorrow": (255, 0, 0) # Blue
|
1051 |
-
}
|
1052 |
-
|
1053 |
-
# Add detailed emotion text with colored background
|
1054 |
-
text_size = cv2.getTextSize(emotion_text, cv2.FONT_HERSHEY_SIMPLEX, 0.6, 2)[0]
|
1055 |
-
cv2.rectangle(frame,
|
1056 |
-
(int(x_min), int(y_min) - text_size[1] - 8),
|
1057 |
-
(int(x_min) + text_size[0] + 8, int(y_min)),
|
1058 |
-
(0, 0, 0), -1)
|
1059 |
-
|
1060 |
-
cv2.putText(frame, emotion_text,
|
1061 |
-
(int(x_min) + 4, int(y_min) - 4),
|
1062 |
-
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
|
1063 |
-
|
1064 |
-
# Draw enhanced landmarks with connections
|
1065 |
-
if len(face.landmarks) > 0:
|
1066 |
-
landmarks = [(int(landmark.position.x), int(landmark.position.y))
|
1067 |
-
for landmark in face.landmarks]
|
1068 |
-
|
1069 |
-
# Draw each landmark
|
1070 |
-
for landmark in landmarks:
|
1071 |
-
cv2.circle(frame, landmark, 3, (255, 255, 0), -1)
|
1072 |
-
|
1073 |
-
# Connect landmarks for eyes, nose, mouth if there are enough points
|
1074 |
-
if len(landmarks) >= 8:
|
1075 |
-
# These indices are approximate - adjust based on your actual data
|
1076 |
-
eye_indices = [0, 1, 2, 3]
|
1077 |
-
for i in range(len(eye_indices)-1):
|
1078 |
-
cv2.line(frame, landmarks[eye_indices[i]],
|
1079 |
-
landmarks[eye_indices[i+1]], (255, 255, 0), 1)
|
1080 |
-
|
1081 |
-
if "Text" in analysis_types:
|
1082 |
-
text = client.text_detection(image=vision_image)
|
1083 |
-
# Update stats
|
1084 |
-
if len(text.text_annotations) > 1:
|
1085 |
-
detection_stats["text_blocks"] += len(text.text_annotations) - 1
|
1086 |
-
|
1087 |
-
# Add overall text summary to the frame
|
1088 |
-
if text.text_annotations:
|
1089 |
-
full_text = text.text_annotations[0].description
|
1090 |
-
words = full_text.split()
|
1091 |
-
short_text = " ".join(words[:5])
|
1092 |
-
if len(words) > 5:
|
1093 |
-
short_text += "..."
|
1094 |
-
|
1095 |
-
# Add text summary to top of frame with better visibility
|
1096 |
-
cv2.rectangle(frame, (10, 60), (10 + len(short_text)*10, 90), (0, 0, 0), -1)
|
1097 |
-
cv2.putText(frame, f"Text: {short_text}",
|
1098 |
-
(10, 80), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
|
1099 |
-
|
1100 |
-
# Draw text boxes with improved visibility
|
1101 |
-
for text_annot in text.text_annotations[1:]:
|
1102 |
-
box = [(vertex.x, vertex.y) for vertex in text_annot.bounding_poly.vertices]
|
1103 |
-
pts = np.array(box, np.int32).reshape((-1, 1, 2))
|
1104 |
-
cv2.polylines(frame, [pts], True, (255, 0, 0), 2) # Thicker lines
|
1105 |
-
|
1106 |
-
# Add Labels analysis for more detail
|
1107 |
-
if "Labels" in analysis_types:
|
1108 |
-
labels = client.label_detection(image=vision_image, max_results=5)
|
1109 |
-
|
1110 |
-
# Add labels to the frame with better visibility
|
1111 |
-
y_pos = 120
|
1112 |
-
cv2.rectangle(frame, (10, y_pos-20), (250, y_pos+20*len(labels.label_annotations)), (0, 0, 0), -1)
|
1113 |
-
cv2.putText(frame, "Scene labels:", (15, y_pos), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
|
1114 |
-
|
1115 |
-
# Track stats and show labels
|
1116 |
-
for i, label in enumerate(labels.label_annotations):
|
1117 |
-
# Update stats
|
1118 |
-
if label.description in detection_stats["labels"]:
|
1119 |
-
detection_stats["labels"][label.description] += 1
|
1120 |
-
else:
|
1121 |
-
detection_stats["labels"][label.description] = 1
|
1122 |
-
|
1123 |
-
# Display on frame with larger text
|
1124 |
-
cv2.putText(frame, f"- {label.description}: {int(label.score*100)}%",
|
1125 |
-
(15, y_pos + 20*(i+1)), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
|
1126 |
-
|
1127 |
-
except Exception as e:
|
1128 |
-
# Show error on frame
|
1129 |
-
cv2.putText(frame, f"API Error: {str(e)[:30]}",
|
1130 |
-
(10, 60), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2)
|
1131 |
-
|
1132 |
-
# Add hint about slowed down speed
|
1133 |
-
cv2.putText(frame, "Playback: 60% speed for better visualization",
|
1134 |
-
(width - 400, height - 30), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 200, 0), 2)
|
1135 |
-
|
1136 |
-
# Write the frame to output video
|
1137 |
-
out.write(frame)
|
1138 |
-
|
1139 |
-
# Release resources
|
1140 |
-
cap.release()
|
1141 |
-
out.release()
|
1142 |
-
|
1143 |
-
# Clear progress indicators
|
1144 |
-
progress_bar.empty()
|
1145 |
-
status_text.empty()
|
1146 |
-
|
1147 |
-
# Read the processed video as bytes for download
|
1148 |
-
with open(output_path, 'rb') as file:
|
1149 |
-
processed_video_bytes = file.read()
|
1150 |
-
|
1151 |
-
# Clean up temporary files
|
1152 |
-
os.unlink(temp_video_path)
|
1153 |
-
os.unlink(output_path)
|
1154 |
-
|
1155 |
-
# Calculate additional statistics
|
1156 |
-
for obj_name, tracking in detection_stats["object_tracking"].items():
|
1157 |
-
# Calculate total screen time
|
1158 |
-
tracking["screen_time"] = round(tracking["frames_present"] * (1/fps) * process_every_n_frames, 2)
|
1159 |
-
# Calculate average confidence if available
|
1160 |
-
if "confidences" in tracking and tracking["confidences"]:
|
1161 |
-
tracking["avg_confidence"] = sum(tracking["confidences"]) / len(tracking["confidences"])
|
1162 |
-
|
1163 |
-
# Return enhanced results
|
1164 |
-
results = {"detection_stats": detection_stats}
|
1165 |
-
|
1166 |
-
# Store results in session state for chatbot context
|
1167 |
-
st.session_state.analysis_results = results
|
1168 |
-
|
1169 |
-
# Update vectorstore with new results
|
1170 |
-
update_vectorstore_with_results(results)
|
1171 |
-
|
1172 |
-
return processed_video_bytes, results
|
1173 |
-
|
1174 |
-
except Exception as e:
|
1175 |
-
# Clean up on error
|
1176 |
-
cap.release()
|
1177 |
-
if 'out' in locals():
|
1178 |
-
out.release()
|
1179 |
-
os.unlink(temp_video_path)
|
1180 |
-
if os.path.exists(output_path):
|
1181 |
-
os.unlink(output_path)
|
1182 |
-
raise e
|
1183 |
|
1184 |
def load_bigquery_table(dataset_id, table_id, limit=1000):
|
1185 |
"""Load data directly from an existing BigQuery table"""
|
|
|
812 |
max_frames = int(fps * 10)
|
813 |
total_frames = min(int(cap.get(cv2.CAP_PROP_FRAME_COUNT)), max_frames)
|
814 |
|
815 |
+
# Define all configuration values at the beginning of the function
|
816 |
+
# ----------------- Key Parameters -----------------
|
817 |
+
# Scene change detection threshold
|
818 |
+
scene_change_threshold = 40.0 # Adjust as needed: lower = more sensitive
|
819 |
+
# Process every Nth frame to reduce API calls
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
820 |
process_every_n_frames = 5
|
821 |
+
# Optical flow parameters
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
822 |
lk_params = dict(winSize=(15, 15),
|
823 |
+
maxLevel=2,
|
824 |
+
criteria=(cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03))
|
825 |
+
# Feature detection parameters
|
|
|
826 |
feature_params = dict(maxCorners=100,
|
827 |
+
qualityLevel=0.3,
|
828 |
+
minDistance=7,
|
829 |
+
blockSize=7)
|
830 |
+
# ----------------- End Parameters -----------------
|
831 |
|
832 |
+
# Rest of the function continues as before...
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
833 |
|
834 |
def load_bigquery_table(dataset_id, table_id, limit=1000):
|
835 |
"""Load data directly from an existing BigQuery table"""
|