Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -8,7 +8,7 @@ from sklearn.tree import DecisionTreeRegressor, DecisionTreeClassifier
|
|
8 |
from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor, RandomForestClassifier
|
9 |
from sklearn.svm import SVR, SVC
|
10 |
from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error, accuracy_score, precision_score, recall_score, f1_score, roc_auc_score
|
11 |
-
from sklearn.impute import KNNImputer
|
12 |
from sklearn.preprocessing import RobustScaler, StandardScaler, OneHotEncoder
|
13 |
from sklearn.compose import ColumnTransformer
|
14 |
from sklearn.pipeline import Pipeline
|
@@ -16,6 +16,9 @@ from ydata_profiling import ProfileReport
|
|
16 |
from streamlit_pandas_profiling import st_profile_report
|
17 |
from io import StringIO
|
18 |
import joblib # For saving and loading models
|
|
|
|
|
|
|
19 |
|
20 |
# Configuration
|
21 |
st.set_page_config(page_title="Data Wizard Pro", layout="wide", page_icon="π§")
|
@@ -30,12 +33,10 @@ st.markdown(
|
|
30 |
color: #e0e0ff; /* Light text */
|
31 |
font-family: 'Courier New', monospace; /* Monospace font */
|
32 |
}
|
33 |
-
|
34 |
/* Main content area */
|
35 |
.stApp {
|
36 |
background-color: #0a0a1a; /* Match body background */
|
37 |
}
|
38 |
-
|
39 |
/* Containers and blocks */
|
40 |
.st-emotion-cache-16idsys,
|
41 |
.st-emotion-cache-1v0mbdj,
|
@@ -51,44 +52,37 @@ st.markdown(
|
|
51 |
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.5); /* Enhanced shadow */
|
52 |
color: #e0e0ff; /* Light text color */
|
53 |
}
|
54 |
-
|
55 |
/* Sidebar */
|
56 |
.st-bb {
|
57 |
background-color: #141422; /* Dark sidebar background */
|
58 |
padding: 20px;
|
59 |
border-radius: 10px;
|
60 |
}
|
61 |
-
|
62 |
/* Headers */
|
63 |
h1, h2, h3, h4, h5, h6, .st-bb {
|
64 |
color: #00f7ff; /* Cyan color for headers */
|
65 |
}
|
66 |
-
|
67 |
/* Selectboxes and Buttons */
|
68 |
.st-cb, .st-ci, .st-cj, .st-ch {
|
69 |
background-color: #141422; /* Dark selectbox background */
|
70 |
color: #00f7ff !important; /* Cyan text color */
|
71 |
border: 1px solid #00f7ff; /* Cyan border */
|
72 |
}
|
73 |
-
|
74 |
/* Selectbox text */
|
75 |
.st-cv {
|
76 |
color: #00f7ff !important; /* Cyan color for selectbox text */
|
77 |
}
|
78 |
-
|
79 |
/* Number input and text input */
|
80 |
.st-cr {
|
81 |
background-color: #141422 !important; /* Dark input background */
|
82 |
color: #00f7ff !important; /* Cyan text color */
|
83 |
border: 1px solid #00f7ff !important; /* Cyan border */
|
84 |
}
|
85 |
-
|
86 |
/* Slider */
|
87 |
.st-cw {
|
88 |
background-color: #141422 !important; /* Dark slider background */
|
89 |
border: 1px solid #00f7ff !important; /* Cyan border */
|
90 |
}
|
91 |
-
|
92 |
/* Buttons */
|
93 |
.st-bz, .st-b0 {
|
94 |
background-color: #141422; /* Darker Button background */
|
@@ -100,7 +94,6 @@ st.markdown(
|
|
100 |
background-color: #00f7ff; /* Hover color */
|
101 |
color: #0a0a1a; /* Hover text color */
|
102 |
}
|
103 |
-
|
104 |
/* File uploader */
|
105 |
.st-ae {
|
106 |
background-color: #141422 !important; /* Dark file uploader background */
|
@@ -113,7 +106,6 @@ st.markdown(
|
|
113 |
border-radius: 10px !important; /* Rounded corners */
|
114 |
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.5) !important; /* Enhanced shadow */
|
115 |
}
|
116 |
-
|
117 |
/* Dataframes and tables */
|
118 |
.dataframe {
|
119 |
background-color: #1e1e30 !important; /* Dark table background */
|
@@ -136,11 +128,100 @@ st.markdown(
|
|
136 |
border-radius: 10px;
|
137 |
}
|
138 |
/* Add more styling for other elements as needed */
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
</style>
|
140 |
""",
|
141 |
unsafe_allow_html=True,
|
142 |
)
|
143 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
# Cache decorators
|
145 |
@st.cache_data(ttl=3600)
|
146 |
def load_data(uploaded_file):
|
@@ -158,7 +239,6 @@ def load_data(uploaded_file):
|
|
158 |
else:
|
159 |
return None
|
160 |
|
161 |
-
|
162 |
@st.cache_data(ttl=3600)
|
163 |
def generate_profile(df):
|
164 |
"""Generate automated EDA report"""
|
@@ -187,7 +267,18 @@ app_mode = st.sidebar.radio("Navigate", [
|
|
187 |
"Visualization Lab"
|
188 |
])
|
189 |
|
190 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
191 |
if app_mode == "Data Upload":
|
192 |
st.title("π€ Data Upload & Analysis")
|
193 |
|
@@ -210,10 +301,10 @@ if app_mode == "Data Upload":
|
|
210 |
# Automated EDA Report
|
211 |
with st.expander("π Automated Data Report"):
|
212 |
if st.button("Generate Smart Report"):
|
|
|
213 |
pr = generate_profile(df)
|
214 |
st_profile_report(pr)
|
215 |
|
216 |
-
# Smart Cleaning Section
|
217 |
elif app_mode == "Smart Cleaning":
|
218 |
st.title("π§Ό Intelligent Data Cleaning")
|
219 |
|
@@ -312,7 +403,6 @@ elif app_mode == "Smart Cleaning":
|
|
312 |
z_scores = np.abs((df[col] - df[col].mean()) / df[col].std())
|
313 |
df = df[z_scores <= zscore_threshold]
|
314 |
|
315 |
-
|
316 |
st.session_state.cleaned_data = df
|
317 |
st.success("Transformation applied!")
|
318 |
|
@@ -324,7 +414,6 @@ elif app_mode == "Smart Cleaning":
|
|
324 |
with col2:
|
325 |
st.write("Cleaned Data", df.head(3))
|
326 |
|
327 |
-
# Advanced EDA Section
|
328 |
elif app_mode == "Advanced EDA":
|
329 |
st.title("π Advanced Exploratory Analysis")
|
330 |
|
@@ -347,12 +436,9 @@ elif app_mode == "Advanced EDA":
|
|
347 |
with cols[0]:
|
348 |
x_col = st.selectbox("X Axis", df.columns)
|
349 |
with cols[1]:
|
350 |
-
y_col = st.selectbox("Y Axis", df.columns) if plot_type in ["
|
351 |
with cols[2]:
|
352 |
z_col = st.selectbox("Z Axis", df.columns) if plot_type == "3D Scatter" else None
|
353 |
-
if plot_type == "Time Series":
|
354 |
-
time_col = x_col # rename for clarity
|
355 |
-
value_col = y_col
|
356 |
|
357 |
#Interactive filtering
|
358 |
filter_col = st.selectbox("Filter Column", [None] + list(df.columns))
|
@@ -361,12 +447,11 @@ elif app_mode == "Advanced EDA":
|
|
361 |
filter_options = st.multiselect("Filter Values", unique_values, default=unique_values)
|
362 |
df = df[df[filter_col].isin(filter_options)]
|
363 |
|
364 |
-
|
365 |
# Generate Plot
|
366 |
if st.button("Generate Visualization"):
|
367 |
try: # add try-except block for potential errors
|
368 |
if plot_type == "Histogram":
|
369 |
-
fig = px.histogram(df, x=x_col, nbins=30, template="plotly_dark")
|
370 |
elif plot_type == "Scatter Plot":
|
371 |
fig = px.scatter(df, x=x_col, y=y_col, color_discrete_sequence=['#00f7ff'])
|
372 |
elif plot_type == "3D Scatter":
|
@@ -391,7 +476,6 @@ elif app_mode == "Advanced EDA":
|
|
391 |
except Exception as e:
|
392 |
st.error(f"Error generating plot: {e}")
|
393 |
|
394 |
-
# Model Training Section
|
395 |
elif app_mode == "Model Training":
|
396 |
st.title("π€ Model Training Studio")
|
397 |
|
@@ -454,11 +538,10 @@ elif app_mode == "Model Training":
|
|
454 |
max_depth = st.slider("Max Depth", 5, 20, None) # None for unlimited
|
455 |
param_grid = {'max_depth': [max_depth]}
|
456 |
|
457 |
-
|
458 |
-
|
459 |
with col2:
|
460 |
if st.button("Train Model"):
|
461 |
try:
|
|
|
462 |
X = df.drop(columns=[target])
|
463 |
y = df[target]
|
464 |
|
@@ -482,7 +565,6 @@ elif app_mode == "Model Training":
|
|
482 |
X_test = preprocessor.transform(X_test)
|
483 |
st.session_state.preprocessor = preprocessor #store for prediction later
|
484 |
|
485 |
-
|
486 |
# Model Training
|
487 |
if task_type == "Regression":
|
488 |
if model_type == "Linear Regression":
|
@@ -505,15 +587,17 @@ elif app_mode == "Model Training":
|
|
505 |
elif model_type == "Support Vector Machine":
|
506 |
model = SVC(probability=True) #probability=True needed for ROC AUC
|
507 |
|
508 |
-
|
509 |
#Hyperparameter tuning
|
510 |
if enable_hyperparameter_tuning and model_type in ["Random Forest", "Gradient Boosting", "Support Vector Machine", "Logistic Regression", "Decision Tree"]:
|
511 |
grid_search = GridSearchCV(model, param_grid, cv=3, scoring='neg_mean_squared_error' if task_type == "Regression" else 'accuracy')
|
|
|
|
|
512 |
grid_search.fit(X_train, y_train)
|
513 |
model = grid_search.best_estimator_ #use best model
|
514 |
st.write("Best Parameters:", grid_search.best_params_)
|
515 |
|
516 |
else:
|
|
|
517 |
model.fit(X_train, y_train)
|
518 |
|
519 |
st.session_state.model = model
|
@@ -553,13 +637,13 @@ elif app_mode == "Model Training":
|
|
553 |
st.write("Cross-Validation Scores:", scores)
|
554 |
st.write("Mean Cross-Validation Score:", scores.mean())
|
555 |
|
556 |
-
|
557 |
-
|
558 |
#Model persistence
|
559 |
if st.checkbox("Save Model"):
|
560 |
model_filename = st.text_input("Model Filename", "trained_model.joblib")
|
561 |
joblib.dump((model, preprocessor), model_filename) # save both model AND preprocessor
|
562 |
st.success(f"Model saved as {model_filename}")
|
|
|
|
|
563 |
except Exception as e:
|
564 |
st.error(f"Error during training: {e}")
|
565 |
|
@@ -581,7 +665,6 @@ elif app_mode == "Predictions":
|
|
581 |
|
582 |
if st.button("Predict"):
|
583 |
try:
|
584 |
-
|
585 |
input_df = pd.DataFrame([input_data])
|
586 |
# Preprocess input
|
587 |
input_processed = preprocessor.transform(input_df)
|
@@ -602,7 +685,8 @@ elif app_mode == "Predictions":
|
|
602 |
else:
|
603 |
st.warning("Please train a model first.")
|
604 |
|
605 |
-
|
|
|
606 |
st.title("π Advanced Visualization Lab")
|
607 |
|
608 |
if st.session_state.cleaned_data is not None:
|
@@ -610,10 +694,9 @@ elif app_mode == "Visualization Lab":
|
|
610 |
|
611 |
# Visualization Gallery
|
612 |
viz_type = st.selectbox("Choose Visualization Type", [
|
613 |
-
"3D Scatter Plot",
|
614 |
-
"Interactive Heatmap",
|
615 |
"Time Series Analysis",
|
616 |
-
"Cluster Analysis (Coming Soon)"
|
617 |
])
|
618 |
|
619 |
# Dynamic Controls
|
@@ -621,19 +704,24 @@ elif app_mode == "Visualization Lab":
|
|
621 |
with cols[0]:
|
622 |
x_axis = st.selectbox("X Axis", df.columns)
|
623 |
with cols[1]:
|
624 |
-
y_axis = st.selectbox("Y Axis", df.columns)
|
625 |
with cols[2]:
|
626 |
z_axis = st.selectbox("Z Axis", df.columns) if viz_type == "3D Scatter Plot" else None
|
627 |
|
628 |
# Generate Visualization
|
629 |
-
try:
|
630 |
if viz_type == "3D Scatter Plot":
|
631 |
-
|
632 |
-
|
|
|
|
|
|
|
|
|
633 |
|
634 |
elif viz_type == "Interactive Heatmap":
|
635 |
-
corr = df.corr(numeric_only=True)
|
636 |
fig = px.imshow(corr, text_auto=True, color_continuous_scale='RdBu')
|
|
|
637 |
st.plotly_chart(fig, use_container_width=True)
|
638 |
|
639 |
elif viz_type == "Time Series Analysis":
|
@@ -641,9 +729,11 @@ elif app_mode == "Visualization Lab":
|
|
641 |
time_col = st.selectbox("Time Column", df.columns)
|
642 |
value_col = st.selectbox("Value Column", df.columns)
|
643 |
fig = px.line(df, x=time_col, y=value_col)
|
|
|
644 |
st.plotly_chart(fig, use_container_width=True)
|
645 |
|
646 |
-
elif viz_type == "Cluster Analysis (Coming Soon)":
|
647 |
-
|
|
|
648 |
except Exception as e:
|
649 |
-
st.error(f"Error generating visualization: {e}")
|
|
|
8 |
from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor, RandomForestClassifier
|
9 |
from sklearn.svm import SVR, SVC
|
10 |
from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error, accuracy_score, precision_score, recall_score, f1_score, roc_auc_score
|
11 |
+
from sklearn.impute import KNNImputer, SimpleImputer
|
12 |
from sklearn.preprocessing import RobustScaler, StandardScaler, OneHotEncoder
|
13 |
from sklearn.compose import ColumnTransformer
|
14 |
from sklearn.pipeline import Pipeline
|
|
|
16 |
from streamlit_pandas_profiling import st_profile_report
|
17 |
from io import StringIO
|
18 |
import joblib # For saving and loading models
|
19 |
+
import requests
|
20 |
+
import asyncio
|
21 |
+
from io import BytesIO
|
22 |
|
23 |
# Configuration
|
24 |
st.set_page_config(page_title="Data Wizard Pro", layout="wide", page_icon="π§")
|
|
|
33 |
color: #e0e0ff; /* Light text */
|
34 |
font-family: 'Courier New', monospace; /* Monospace font */
|
35 |
}
|
|
|
36 |
/* Main content area */
|
37 |
.stApp {
|
38 |
background-color: #0a0a1a; /* Match body background */
|
39 |
}
|
|
|
40 |
/* Containers and blocks */
|
41 |
.st-emotion-cache-16idsys,
|
42 |
.st-emotion-cache-1v0mbdj,
|
|
|
52 |
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.5); /* Enhanced shadow */
|
53 |
color: #e0e0ff; /* Light text color */
|
54 |
}
|
|
|
55 |
/* Sidebar */
|
56 |
.st-bb {
|
57 |
background-color: #141422; /* Dark sidebar background */
|
58 |
padding: 20px;
|
59 |
border-radius: 10px;
|
60 |
}
|
|
|
61 |
/* Headers */
|
62 |
h1, h2, h3, h4, h5, h6, .st-bb {
|
63 |
color: #00f7ff; /* Cyan color for headers */
|
64 |
}
|
|
|
65 |
/* Selectboxes and Buttons */
|
66 |
.st-cb, .st-ci, .st-cj, .st-ch {
|
67 |
background-color: #141422; /* Dark selectbox background */
|
68 |
color: #00f7ff !important; /* Cyan text color */
|
69 |
border: 1px solid #00f7ff; /* Cyan border */
|
70 |
}
|
|
|
71 |
/* Selectbox text */
|
72 |
.st-cv {
|
73 |
color: #00f7ff !important; /* Cyan color for selectbox text */
|
74 |
}
|
|
|
75 |
/* Number input and text input */
|
76 |
.st-cr {
|
77 |
background-color: #141422 !important; /* Dark input background */
|
78 |
color: #00f7ff !important; /* Cyan text color */
|
79 |
border: 1px solid #00f7ff !important; /* Cyan border */
|
80 |
}
|
|
|
81 |
/* Slider */
|
82 |
.st-cw {
|
83 |
background-color: #141422 !important; /* Dark slider background */
|
84 |
border: 1px solid #00f7ff !important; /* Cyan border */
|
85 |
}
|
|
|
86 |
/* Buttons */
|
87 |
.st-bz, .st-b0 {
|
88 |
background-color: #141422; /* Darker Button background */
|
|
|
94 |
background-color: #00f7ff; /* Hover color */
|
95 |
color: #0a0a1a; /* Hover text color */
|
96 |
}
|
|
|
97 |
/* File uploader */
|
98 |
.st-ae {
|
99 |
background-color: #141422 !important; /* Dark file uploader background */
|
|
|
106 |
border-radius: 10px !important; /* Rounded corners */
|
107 |
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.5) !important; /* Enhanced shadow */
|
108 |
}
|
|
|
109 |
/* Dataframes and tables */
|
110 |
.dataframe {
|
111 |
background-color: #1e1e30 !important; /* Dark table background */
|
|
|
128 |
border-radius: 10px;
|
129 |
}
|
130 |
/* Add more styling for other elements as needed */
|
131 |
+
/* Style the space around the navigation menu to match the theme */
|
132 |
+
[data-testid="stSidebar"] {
|
133 |
+
background-color: #141422 !important;
|
134 |
+
}
|
135 |
+
[data-testid="stSidebarNav"] {
|
136 |
+
background-color: #141422 !important;
|
137 |
+
color: #e0e0ff !important;
|
138 |
+
}
|
139 |
+
[data-testid="stSidebarNavItems"] {
|
140 |
+
color: #e0e0ff !important;
|
141 |
+
}
|
142 |
+
/* Ensure all text is white or cyan (no black) */
|
143 |
+
.st-bb,
|
144 |
+
.st-cb, .st-ci, .st-cj, .st-ch,
|
145 |
+
.st-cv,
|
146 |
+
.st-cr,
|
147 |
+
.st-cw,
|
148 |
+
.st-ae,
|
149 |
+
.st-emotion-cache-r421ms,
|
150 |
+
.st-emotion-cache-10oheav,
|
151 |
+
.st-emotion-cache-16idsys,
|
152 |
+
.st-emotion-cache-1v0mbdj,
|
153 |
+
.st-emotion-cache-1wrcr25,
|
154 |
+
.st-emotion-cache-607q0z,
|
155 |
+
.st-emotion-cache-1v3fvcr,
|
156 |
+
.st-emotion-cache-10trblm {
|
157 |
+
color: #e0e0ff !important; /* Default to white */
|
158 |
+
}
|
159 |
+
h1, h2, h3, h4, h5, h6 {
|
160 |
+
color: #00f7ff !important; /* Headings to cyan */
|
161 |
+
}
|
162 |
+
|
163 |
+
/* Styles for loader */
|
164 |
+
.loader {
|
165 |
+
border: 5px solid #f3f3f3;
|
166 |
+
border-top: 5px solid #00f7ff; /* Cyan loader color */
|
167 |
+
border-radius: 50%;
|
168 |
+
width: 30px;
|
169 |
+
height: 30px;
|
170 |
+
animation: spin 2s linear infinite;
|
171 |
+
}
|
172 |
+
|
173 |
+
@keyframes spin {
|
174 |
+
0% { transform: rotate(0deg); }
|
175 |
+
100% { transform: rotate(360deg); }
|
176 |
+
}
|
177 |
</style>
|
178 |
""",
|
179 |
unsafe_allow_html=True,
|
180 |
)
|
181 |
|
182 |
+
# --- Image Loading ---
|
183 |
+
@st.cache_data(ttl=3600)
|
184 |
+
async def load_image(image_url):
|
185 |
+
"""Loads an image from a URL asynchronously."""
|
186 |
+
try:
|
187 |
+
response = requests.get(image_url, stream=True)
|
188 |
+
response.raise_for_status() # Raise HTTPError for bad responses (4xx or 5xx)
|
189 |
+
return BytesIO(response.content) # Return image data as a BytesIO object
|
190 |
+
except requests.exceptions.RequestException as e:
|
191 |
+
st.error(f"Error loading image: {e}")
|
192 |
+
return None # Handle errors gracefully
|
193 |
+
|
194 |
+
async def set_background():
|
195 |
+
"""Sets the background image."""
|
196 |
+
image_url = "https://images.unsplash.com/photo-1504821618514-8c1b6e408ca8?ixlib=rb-4.0.3&ixid=MnwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8&auto=format&fit=crop&w=1949&q=80" # Replace with actual URL
|
197 |
+
image_data = await load_image(image_url)
|
198 |
+
|
199 |
+
if image_data:
|
200 |
+
st.markdown(
|
201 |
+
f"""
|
202 |
+
<style>
|
203 |
+
.stApp {{
|
204 |
+
background-image: url(data:image/{"jpeg"};base64,{image_data.getvalue().hex()});
|
205 |
+
background-size: cover;
|
206 |
+
}}
|
207 |
+
</style>
|
208 |
+
""",
|
209 |
+
unsafe_allow_html=True
|
210 |
+
)
|
211 |
+
asyncio.run(set_background())
|
212 |
+
# --- Loader ----
|
213 |
+
def show_loader(message="Loading..."):
|
214 |
+
"""Displays an animated loader."""
|
215 |
+
st.markdown(
|
216 |
+
f"""
|
217 |
+
<div style="display: flex; align-items: center; justify-content: center; margin-top: 20px;">
|
218 |
+
<div class="loader"></div>
|
219 |
+
<span style="margin-left: 10px; color: #00f7ff;">{message}</span>
|
220 |
+
</div>
|
221 |
+
""",
|
222 |
+
unsafe_allow_html=True
|
223 |
+
)
|
224 |
+
|
225 |
# Cache decorators
|
226 |
@st.cache_data(ttl=3600)
|
227 |
def load_data(uploaded_file):
|
|
|
239 |
else:
|
240 |
return None
|
241 |
|
|
|
242 |
@st.cache_data(ttl=3600)
|
243 |
def generate_profile(df):
|
244 |
"""Generate automated EDA report"""
|
|
|
267 |
"Visualization Lab"
|
268 |
])
|
269 |
|
270 |
+
# --- Progress Bar ----
|
271 |
+
def animated_progress_bar(progress_var, message="Processing..."):
|
272 |
+
"""Displays an animated progress bar with a message."""
|
273 |
+
progress_bar = st.progress(0)
|
274 |
+
status_text = st.empty() # Empty element to update the status message
|
275 |
+
|
276 |
+
for i in range(progress_var): #progress will increment
|
277 |
+
status_text.text(f"{message} ({i+1}/{progress_var})")
|
278 |
+
progress_bar.progress((i+1)/progress_var) #progress incrementally.
|
279 |
+
time.sleep(0.01) # reduced sleep timer as its getting too long
|
280 |
+
|
281 |
+
# --- Main App Logic ---
|
282 |
if app_mode == "Data Upload":
|
283 |
st.title("π€ Data Upload & Analysis")
|
284 |
|
|
|
301 |
# Automated EDA Report
|
302 |
with st.expander("π Automated Data Report"):
|
303 |
if st.button("Generate Smart Report"):
|
304 |
+
show_loader("Generating EDA Report")
|
305 |
pr = generate_profile(df)
|
306 |
st_profile_report(pr)
|
307 |
|
|
|
308 |
elif app_mode == "Smart Cleaning":
|
309 |
st.title("π§Ό Intelligent Data Cleaning")
|
310 |
|
|
|
403 |
z_scores = np.abs((df[col] - df[col].mean()) / df[col].std())
|
404 |
df = df[z_scores <= zscore_threshold]
|
405 |
|
|
|
406 |
st.session_state.cleaned_data = df
|
407 |
st.success("Transformation applied!")
|
408 |
|
|
|
414 |
with col2:
|
415 |
st.write("Cleaned Data", df.head(3))
|
416 |
|
|
|
417 |
elif app_mode == "Advanced EDA":
|
418 |
st.title("π Advanced Exploratory Analysis")
|
419 |
|
|
|
436 |
with cols[0]:
|
437 |
x_col = st.selectbox("X Axis", df.columns)
|
438 |
with cols[1]:
|
439 |
+
y_col = st.selectbox("Y Axis", df.columns) if plot_type not in ["Correlation Heatmap"] else None
|
440 |
with cols[2]:
|
441 |
z_col = st.selectbox("Z Axis", df.columns) if plot_type == "3D Scatter" else None
|
|
|
|
|
|
|
442 |
|
443 |
#Interactive filtering
|
444 |
filter_col = st.selectbox("Filter Column", [None] + list(df.columns))
|
|
|
447 |
filter_options = st.multiselect("Filter Values", unique_values, default=unique_values)
|
448 |
df = df[df[filter_col].isin(filter_options)]
|
449 |
|
|
|
450 |
# Generate Plot
|
451 |
if st.button("Generate Visualization"):
|
452 |
try: # add try-except block for potential errors
|
453 |
if plot_type == "Histogram":
|
454 |
+
fig = px.histogram(df, x=x_col, y=y_col, nbins=30, template="plotly_dark")
|
455 |
elif plot_type == "Scatter Plot":
|
456 |
fig = px.scatter(df, x=x_col, y=y_col, color_discrete_sequence=['#00f7ff'])
|
457 |
elif plot_type == "3D Scatter":
|
|
|
476 |
except Exception as e:
|
477 |
st.error(f"Error generating plot: {e}")
|
478 |
|
|
|
479 |
elif app_mode == "Model Training":
|
480 |
st.title("π€ Model Training Studio")
|
481 |
|
|
|
538 |
max_depth = st.slider("Max Depth", 5, 20, None) # None for unlimited
|
539 |
param_grid = {'max_depth': [max_depth]}
|
540 |
|
|
|
|
|
541 |
with col2:
|
542 |
if st.button("Train Model"):
|
543 |
try:
|
544 |
+
show_loader("Training the Model")
|
545 |
X = df.drop(columns=[target])
|
546 |
y = df[target]
|
547 |
|
|
|
565 |
X_test = preprocessor.transform(X_test)
|
566 |
st.session_state.preprocessor = preprocessor #store for prediction later
|
567 |
|
|
|
568 |
# Model Training
|
569 |
if task_type == "Regression":
|
570 |
if model_type == "Linear Regression":
|
|
|
587 |
elif model_type == "Support Vector Machine":
|
588 |
model = SVC(probability=True) #probability=True needed for ROC AUC
|
589 |
|
|
|
590 |
#Hyperparameter tuning
|
591 |
if enable_hyperparameter_tuning and model_type in ["Random Forest", "Gradient Boosting", "Support Vector Machine", "Logistic Regression", "Decision Tree"]:
|
592 |
grid_search = GridSearchCV(model, param_grid, cv=3, scoring='neg_mean_squared_error' if task_type == "Regression" else 'accuracy')
|
593 |
+
animated_progress_bar(50, "Performing Grid Search") #add loading for grid search
|
594 |
+
|
595 |
grid_search.fit(X_train, y_train)
|
596 |
model = grid_search.best_estimator_ #use best model
|
597 |
st.write("Best Parameters:", grid_search.best_params_)
|
598 |
|
599 |
else:
|
600 |
+
animated_progress_bar(80, "Fitting Model")
|
601 |
model.fit(X_train, y_train)
|
602 |
|
603 |
st.session_state.model = model
|
|
|
637 |
st.write("Cross-Validation Scores:", scores)
|
638 |
st.write("Mean Cross-Validation Score:", scores.mean())
|
639 |
|
|
|
|
|
640 |
#Model persistence
|
641 |
if st.checkbox("Save Model"):
|
642 |
model_filename = st.text_input("Model Filename", "trained_model.joblib")
|
643 |
joblib.dump((model, preprocessor), model_filename) # save both model AND preprocessor
|
644 |
st.success(f"Model saved as {model_filename}")
|
645 |
+
animated_progress_bar(100, "Model Trained Succesfully")
|
646 |
+
|
647 |
except Exception as e:
|
648 |
st.error(f"Error during training: {e}")
|
649 |
|
|
|
665 |
|
666 |
if st.button("Predict"):
|
667 |
try:
|
|
|
668 |
input_df = pd.DataFrame([input_data])
|
669 |
# Preprocess input
|
670 |
input_processed = preprocessor.transform(input_df)
|
|
|
685 |
else:
|
686 |
st.warning("Please train a model first.")
|
687 |
|
688 |
+
|
689 |
+
elif app_mode == "Visualization Lab":
|
690 |
st.title("π Advanced Visualization Lab")
|
691 |
|
692 |
if st.session_state.cleaned_data is not None:
|
|
|
694 |
|
695 |
# Visualization Gallery
|
696 |
viz_type = st.selectbox("Choose Visualization Type", [
|
697 |
+
"3D Scatter Plot"Interactive Heatmap",
|
|
|
698 |
"Time Series Analysis",
|
699 |
+
"Cluster Analysis (Coming Soon)" # Removed placeholder
|
700 |
])
|
701 |
|
702 |
# Dynamic Controls
|
|
|
704 |
with cols[0]:
|
705 |
x_axis = st.selectbox("X Axis", df.columns)
|
706 |
with cols[1]:
|
707 |
+
y_axis = st.selectbox("Y Axis", df.columns) if viz_type not in ["Interactive Heatmap"] else None
|
708 |
with cols[2]:
|
709 |
z_axis = st.selectbox("Z Axis", df.columns) if viz_type == "3D Scatter Plot" else None
|
710 |
|
711 |
# Generate Visualization
|
712 |
+
try: # Add try-except
|
713 |
if viz_type == "3D Scatter Plot":
|
714 |
+
if y_axis is None or z_axis is None:
|
715 |
+
st.error("Please select Y and Z axes for 3D Scatter Plot.")
|
716 |
+
else:
|
717 |
+
fig = px.scatter_3d(df, x=x_axis, y=y_axis, z=z_axis, color=x_axis)
|
718 |
+
fig.update_layout(plot_bgcolor="#1e1e30", paper_bgcolor="#1e1e30", font_color="#e0e0ff")
|
719 |
+
st.plotly_chart(fig, use_container_width=True)
|
720 |
|
721 |
elif viz_type == "Interactive Heatmap":
|
722 |
+
corr = df.corr(numeric_only=True) # Add numeric_only=True
|
723 |
fig = px.imshow(corr, text_auto=True, color_continuous_scale='RdBu')
|
724 |
+
fig.update_layout(plot_bgcolor="#1e1e30", paper_bgcolor="#1e1e30", font_color="#e0e0ff")
|
725 |
st.plotly_chart(fig, use_container_width=True)
|
726 |
|
727 |
elif viz_type == "Time Series Analysis":
|
|
|
729 |
time_col = st.selectbox("Time Column", df.columns)
|
730 |
value_col = st.selectbox("Value Column", df.columns)
|
731 |
fig = px.line(df, x=time_col, y=value_col)
|
732 |
+
fig.update_layout(plot_bgcolor="#1e1e30", paper_bgcolor="#1e1e30", font_color="#e0e0ff")
|
733 |
st.plotly_chart(fig, use_container_width=True)
|
734 |
|
735 |
+
elif viz_type == "Cluster Analysis (Coming Soon)": # Removed placeholder
|
736 |
+
st.write("Cluster Analysis Feature Coming Soon!") # placeholder for future development
|
737 |
+
|
738 |
except Exception as e:
|
739 |
+
st.error(f"Error generating visualization: {e}")
|