Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,1360 +1,322 @@
|
|
1 |
-
import
|
2 |
-
import numpy as np
|
3 |
import pandas as pd
|
4 |
-
import
|
5 |
-
import
|
6 |
-
import
|
7 |
-
import os
|
8 |
-
from tensorflow.keras.models import Sequential
|
9 |
-
from tensorflow.keras.layers import Dense, Dropout
|
10 |
from sklearn.preprocessing import StandardScaler, LabelEncoder
|
11 |
from sklearn.model_selection import train_test_split
|
12 |
-
import
|
13 |
-
|
14 |
-
from pydantic_settings import BaseSettings # Fix: import from pydantic_settings
|
15 |
-
# pandas_profiling import and fix
|
16 |
from ydata_profiling import ProfileReport
|
17 |
from streamlit_pandas_profiling import st_profile_report
|
18 |
-
|
19 |
-
|
20 |
-
import streamlit as st
|
21 |
-
import numpy as np
|
22 |
-
import pandas as pd
|
23 |
-
import plotly.express as px
|
24 |
-
from scipy import stats
|
25 |
-
import plotly.colors as pc
|
26 |
import joblib
|
27 |
-
|
28 |
-
import
|
29 |
-
import asyncio
|
30 |
-
from io import BytesIO
|
31 |
-
import base64
|
32 |
-
import tensorflow as tf
|
33 |
-
from tensorflow import keras
|
34 |
-
from tensorflow.keras import layers, callbacks
|
35 |
-
from tensorflow.keras.utils import to_categorical
|
36 |
-
from keras.models import Sequential
|
37 |
-
from keras.layers import Dense
|
38 |
-
import mimetypes
|
39 |
-
import tensorflow
|
40 |
-
import matplotlib.pyplot as plt
|
41 |
-
from sklearn.model_selection import train_test_split, GridSearchCV, cross_val_score, learning_curve
|
42 |
-
from sklearn.linear_model import LinearRegression, LogisticRegression
|
43 |
-
from sklearn.tree import DecisionTreeRegressor, DecisionTreeClassifier
|
44 |
-
from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor, RandomForestClassifier, GradientBoostingClassifier
|
45 |
-
from sklearn.svm import SVR, SVC
|
46 |
-
from sklearn.feature_selection import SelectKBest
|
47 |
-
from sklearn.experimental import enable_iterative_imputer
|
48 |
-
from sklearn.impute import IterativeImputer
|
49 |
-
from sklearn.neural_network import MLPRegressor, MLPClassifier
|
50 |
-
from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error, accuracy_score, precision_score, recall_score, f1_score, confusion_matrix, classification_report
|
51 |
-
from sklearn.impute import KNNImputer, SimpleImputer
|
52 |
-
from sklearn.preprocessing import RobustScaler, StandardScaler, OneHotEncoder, LabelEncoder
|
53 |
-
from sklearn.compose import ColumnTransformer
|
54 |
-
from sklearn.pipeline import Pipeline
|
55 |
-
|
56 |
-
from datetime import datetime # Import datetime
|
57 |
-
|
58 |
|
59 |
-
#
|
|
|
|
|
60 |
st.set_page_config(
|
61 |
-
page_title="
|
|
|
62 |
layout="wide",
|
63 |
-
page_icon="📈",
|
64 |
initial_sidebar_state="expanded"
|
65 |
)
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
if 'raw_data' not in st.session_state:
|
68 |
st.session_state.raw_data = None
|
69 |
if 'cleaned_data' not in st.session_state:
|
70 |
st.session_state.cleaned_data = None
|
71 |
-
|
72 |
if 'model' not in st.session_state:
|
73 |
st.session_state.model = None
|
74 |
-
if 'preprocessor' not in st.session_state:
|
75 |
-
st.session_state.preprocessor = None
|
76 |
-
|
77 |
-
# Security: Set allowed file types
|
78 |
-
ALLOWED_EXTENSIONS = {'csv', 'xlsx', 'parquet', 'feather'}
|
79 |
-
MAX_FILE_SIZE_MB = 250 # 250MB limit
|
80 |
-
|
81 |
-
def validate_file(file):
|
82 |
-
"""Comprehensive file validation"""
|
83 |
-
if not file:
|
84 |
-
return False, "No file uploaded"
|
85 |
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
file_size_mb = file.size / (1024 * 1024)
|
91 |
-
if file_size_mb > MAX_FILE_SIZE_MB:
|
92 |
-
return False, f"File size exceeds {MAX_FILE_SIZE_MB}MB limit"
|
93 |
-
|
94 |
-
return True, ""
|
95 |
-
|
96 |
-
@st.cache_data(ttl=3600, show_spinner="Analyzing data quality...")
|
97 |
-
def enhanced_quality_report(df):
|
98 |
"""Generate comprehensive data quality report"""
|
99 |
report = {
|
100 |
-
'
|
101 |
'rows': df.shape[0],
|
102 |
'columns': df.shape[1],
|
103 |
-
'
|
104 |
'duplicates': df.duplicated().sum()
|
105 |
},
|
106 |
-
'
|
107 |
-
'data_health_score': 100 # Starting score
|
108 |
}
|
109 |
-
|
110 |
for col in df.columns:
|
111 |
col_report = {
|
112 |
'type': str(df[col].dtype),
|
113 |
'unique': df[col].nunique(),
|
114 |
'missing': df[col].isna().sum(),
|
115 |
-
'samples': df[col].dropna().sample(3).tolist() if df[col].dtype == 'object' else []
|
116 |
}
|
117 |
-
|
118 |
-
# Numeric specific checks
|
119 |
if pd.api.types.is_numeric_dtype(df[col]):
|
120 |
col_report.update({
|
121 |
'mean': df[col].mean(),
|
122 |
'std': df[col].std(),
|
123 |
-
'zeros': (df[col] == 0).sum()
|
124 |
-
'negatives': (df[col] < 0).sum() if df[col].dtype != 'uint' else 0,
|
125 |
-
'outliers': detect_outliers(df[col])
|
126 |
-
})
|
127 |
-
report['data_health_score'] -= 2 # Deduct 2% per numeric column
|
128 |
-
|
129 |
-
# Categorical specific checks
|
130 |
-
if pd.api.types.is_string_dtype(df[col]):
|
131 |
-
col_report.update({
|
132 |
-
'top_value': df[col].mode()[0] if not df[col].empty else None,
|
133 |
-
'top_freq': df[col].value_counts().iloc[0]/len(df) if not df[col].empty else 0
|
134 |
})
|
135 |
-
|
136 |
-
|
137 |
-
report['column_analysis'][col] = col_report
|
138 |
-
report['data_health_score'] = max(report['data_health_score'], 0)
|
139 |
-
|
140 |
return report
|
141 |
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
)
|
155 |
-
|
156 |
-
|
157 |
-
#
|
158 |
-
|
159 |
-
|
160 |
-
# --- Data Upload Page ---
|
161 |
-
# Data Upload Page
|
162 |
if app_mode == "Data Upload":
|
163 |
-
st.title("
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
# File upload
|
169 |
-
uploaded_file = st.file_uploader("Drag & drop or browse files", type=list(ALLOWED_EXTENSIONS))
|
170 |
-
|
171 |
if uploaded_file:
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
st.error(f"Upload error: {message}")
|
176 |
-
st.stop()
|
177 |
-
|
178 |
-
# Load data with progress
|
179 |
-
with st.spinner(f"Loading {uploaded_file.name} ..."):
|
180 |
-
try:
|
181 |
-
if uploaded_file.name.endswith('.csv'):
|
182 |
-
df = pd.read_csv(uploaded_file, low_memory=False)
|
183 |
-
elif uploaded_file.name.endswith(('.xlsx', '.xls')):
|
184 |
-
df = pd.read_excel(uploaded_file)
|
185 |
-
elif uploaded_file.name.endswith('.parquet'):
|
186 |
-
df = pd.read_parquet(uploaded_file)
|
187 |
-
elif uploaded_file.name.endswith('.feather'):
|
188 |
-
df = pd.read_feather(uploaded_file)
|
189 |
-
st.session_state.raw_data = df
|
190 |
-
st.success("Dataset loaded successfully!")
|
191 |
-
except Exception as e:
|
192 |
-
st.error(f"Error loading file: {str(e)}")
|
193 |
-
st.stop()
|
194 |
-
|
195 |
-
# In your Data Upload section, add this when new data is uploaded
|
196 |
-
if uploaded_file is not None:
|
197 |
-
# Reset models when new data is uploaded
|
198 |
-
st.session_state.model = None
|
199 |
-
st.session_state.preprocessor = None
|
200 |
-
|
201 |
-
# Data Health Dashboard
|
202 |
-
st.subheader("📊 Data Health Dashboard")
|
203 |
-
report = enhanced_quality_report(df)
|
204 |
-
|
205 |
-
col1, col2, col3, col4 = st.columns(4)
|
206 |
-
col1.metric("Total Rows", report['basic_stats']['rows'])
|
207 |
-
col2.metric("Total Columns", report['basic_stats']['columns'])
|
208 |
-
col3.metric("Missing Values", report['basic_stats']['missing_values'])
|
209 |
-
col4.metric("Data Health Score", f"{report['data_health_score']}/100")
|
210 |
-
|
211 |
-
# Column Explorer
|
212 |
-
with st.expander("🔍 Deep Column Analysis", expanded=True):
|
213 |
-
selected_col = st.selectbox("Select column to inspect", df.columns)
|
214 |
-
col_info = report['column_analysis'][selected_col]
|
215 |
-
|
216 |
-
st.write(f"**Type:** {col_info['type']}")
|
217 |
-
st.write(f"**Unique Values:** {col_info['unique']}")
|
218 |
-
st.write(f"**Missing Values:** {col_info['missing']} ({col_info['missing']/len(df):.1%})")
|
219 |
-
|
220 |
-
if pd.api.types.is_numeric_dtype(df[selected_col]):
|
221 |
-
st.write("**Distribution:**")
|
222 |
-
st.line_chart(df[selected_col])
|
223 |
-
st.write(f"**Outliers Detected:** {col_info['outliers']}")
|
224 |
-
else:
|
225 |
-
st.write("**Most Common Values:**")
|
226 |
-
top_values = df[selected_col].value_counts().head(5)
|
227 |
-
st.bar_chart(top_values)
|
228 |
-
|
229 |
-
# Smart Recommendations
|
230 |
-
with st.expander("💡 Cleaning Recommendations"):
|
231 |
-
recommendations = []
|
232 |
-
if report['basic_stats']['duplicates'] > 0:
|
233 |
-
recommendations.append(f"🚨 Remove {report['basic_stats']['duplicates']} duplicate rows")
|
234 |
-
if report['basic_stats']['missing_values'] > 0:
|
235 |
-
recommendations.append("🔧 Apply advanced imputation strategies")
|
236 |
-
for col, data in report['column_analysis'].items():
|
237 |
-
if data['missing'] > 0.5 * len(df):
|
238 |
-
recommendations.append(f"⚠️ Consider dropping {col} (>{50}% missing)")
|
239 |
-
if data['unique'] == len(df):
|
240 |
-
recommendations.append(f"🔍 Investigate {col} - potential unique identifier")
|
241 |
-
|
242 |
-
if recommendations:
|
243 |
-
st.write("### Recommended Actions")
|
244 |
-
for rec in recommendations[:5]: # Show top 5
|
245 |
-
st.write(f"- {rec}")
|
246 |
else:
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
253 |
|
254 |
-
|
255 |
-
|
256 |
-
with st.spinner("Generating comprehensive report..."):
|
257 |
-
pr = ProfileReport(df, explorative=True,title="Data Upload Report") # Added title to pandas profiling
|
258 |
-
st_profile_report(pr)
|
259 |
|
|
|
|
|
|
|
260 |
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
"
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
"Deep Learning Imputation"
|
279 |
-
], horizontal=True)
|
280 |
-
|
281 |
-
if method == "Mean/Median/Mode":
|
282 |
-
imputation_choice = st.radio("Select Imputation Method", ["Mean", "Median", "Mode"], horizontal=True)
|
283 |
-
|
284 |
-
if st.button(f"Apply {method}"):
|
285 |
-
try:
|
286 |
-
original_df = df.copy()
|
287 |
-
if method == "Mean/Median/Mode":
|
288 |
for col in cols:
|
289 |
-
if df[col]
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
st.success(f"{method} applied successfully! ✅")
|
303 |
-
except Exception as e:
|
304 |
-
st.error(f"Error: {str(e)}")
|
305 |
-
else:
|
306 |
-
st.success("✨ No missing values found!")
|
307 |
-
|
308 |
-
# 2. Duplicate Handling
|
309 |
-
with tab2:
|
310 |
-
st.markdown("### 🔄 Handle Duplicates")
|
311 |
-
duplicates = df.duplicated().sum()
|
312 |
-
if duplicates > 0:
|
313 |
-
st.plotly_chart(px.histogram(df, x=df.duplicated(), title="Duplicate Distribution"))
|
314 |
-
dup_strategy = st.radio("Duplicate Strategy", [
|
315 |
-
"Remove All Duplicates",
|
316 |
-
"Keep First Occurrence",
|
317 |
-
"Keep Last Occurrence"
|
318 |
-
])
|
319 |
-
if st.button("Handle Duplicates"):
|
320 |
-
original_count = len(df)
|
321 |
-
df = df.drop_duplicates(keep={
|
322 |
-
"Remove All Duplicates": False,
|
323 |
-
"Keep First Occurrence": 'first',
|
324 |
-
"Keep Last Occurrence": 'last'
|
325 |
-
}[dup_strategy])
|
326 |
-
cleaning_actions.append(f"Removed {original_count - len(df)} duplicates")
|
327 |
-
update_version(df)
|
328 |
-
st.success(f"Removed {original_count - len(df)} duplicates! ✅")
|
329 |
-
else:
|
330 |
-
st.success("✨ No duplicates found!")
|
331 |
-
|
332 |
-
# 3. Data Type Conversion
|
333 |
-
with tab3:
|
334 |
-
st.markdown("### 🔄 Convert Data Types")
|
335 |
-
col1, col2 = st.columns(2)
|
336 |
-
with col1:
|
337 |
-
st.dataframe(df.dtypes.reset_index().rename(columns={0: 'Type', 'index': 'Column'}))
|
338 |
-
with col2:
|
339 |
-
col_to_convert = st.selectbox("Select column to convert", df.columns)
|
340 |
-
new_type = st.selectbox("New Data Type", [
|
341 |
-
"String", "Integer", "Float",
|
342 |
-
"Boolean", "Datetime", "Category"
|
343 |
])
|
344 |
-
|
|
|
345 |
try:
|
346 |
if new_type == "String":
|
347 |
df[col_to_convert] = df[col_to_convert].astype(str)
|
348 |
elif new_type == "Integer":
|
349 |
df[col_to_convert] = pd.to_numeric(df[col_to_convert], errors='coerce').astype('Int64')
|
350 |
-
|
351 |
-
|
352 |
-
elif new_type == "Boolean":
|
353 |
-
df[col_to_convert] = df[col_to_convert].astype(bool)
|
354 |
-
elif new_type == "Datetime":
|
355 |
-
df[col_to_convert] = pd.to_datetime(df[col_to_convert], errors='coerce')
|
356 |
-
elif new_type == "Category":
|
357 |
-
df[col_to_convert] = df[col_to_convert].astype('category')
|
358 |
-
cleaning_actions.append(f"Converted {col_to_convert} to {new_type}")
|
359 |
-
update_version(df)
|
360 |
-
st.success("Data type converted successfully! ✅")
|
361 |
except Exception as e:
|
362 |
-
st.error(f"
|
363 |
-
|
364 |
-
|
365 |
-
with
|
366 |
-
|
367 |
-
numeric_cols = df.select_dtypes(include=np.number).columns.tolist()
|
368 |
-
if numeric_cols:
|
369 |
-
outlier_col = st.selectbox("Select numeric column", numeric_cols)
|
370 |
-
st.plotly_chart(px.box(df, y=outlier_col, title="Outlier Distribution"))
|
371 |
-
if st.button("Remove Outliers"):
|
372 |
-
# Outlier removal logic here...
|
373 |
-
cleaning_actions.append(f"Removed outliers from {outlier_col}")
|
374 |
-
update_version(df)
|
375 |
-
st.success("Outliers removed successfully! ✅")
|
376 |
-
else:
|
377 |
-
st.info("ℹ️ No numeric columns found for outlier detection")
|
378 |
-
|
379 |
-
|
380 |
-
# Drop Column Functionality with Interface
|
381 |
-
st.subheader("🗑️ Drop Specific Columns")
|
382 |
-
cols_to_drop = st.multiselect("Select Columns to Drop", df.columns)
|
383 |
-
if st.button("Drop Selected Columns"):
|
384 |
-
try:
|
385 |
-
df = df.drop(columns=cols_to_drop) # Drop the cols here.
|
386 |
-
cleaning_actions.append(f"Dropped columns: {', '.join(cols_to_drop)}")
|
387 |
-
update_version(df)
|
388 |
-
st.success(f"Columns dropped successfully! ✅")
|
389 |
-
except (KeyError, ValueError) as e:
|
390 |
-
st.error(f"Invalid column(s) selected or other error: {e}") # Handle ValueErrors
|
391 |
-
except Exception as e:
|
392 |
-
st.error(f"An unexpected error occurred: {e}")
|
393 |
-
# Label Encoding (Categorical to Numeric)
|
394 |
-
st.subheader("🔢 Label Encoding")
|
395 |
-
if st.button("Encode Categorical Columns"):
|
396 |
-
try:
|
397 |
-
le = LabelEncoder()
|
398 |
-
categorical_cols = df.select_dtypes(include=['object', 'category']).columns
|
399 |
-
for col in categorical_cols:
|
400 |
-
df[col] = df[col].astype(str) # Ensure all cols are string
|
401 |
-
df[col] = le.fit_transform(df[col])
|
402 |
-
cleaning_actions.append("Applied Label Encoding to categorical columns")
|
403 |
-
update_version(df)
|
404 |
-
st.success("Label encoding applied successfully! ✅")
|
405 |
-
except Exception as e:
|
406 |
-
st.error(f"Label encoding failed: {str(e)}")
|
407 |
-
|
408 |
-
# Live Data Preview after every cleaning action
|
409 |
-
st.subheader("✨ Live Data Preview")
|
410 |
-
st.dataframe(df.head(10)) # show 10 rows
|
411 |
-
|
412 |
-
# 2. Duplicate Handling
|
413 |
-
with tab2:
|
414 |
-
st.markdown("### 🔄 Handle Duplicates")
|
415 |
-
duplicates = df.duplicated().sum()
|
416 |
-
if duplicates > 0:
|
417 |
-
st.plotly_chart(px.histogram(df, x=df.duplicated(), title="Duplicate Distribution"))
|
418 |
-
dup_strategy = st.radio("Duplicate Strategy", [
|
419 |
-
"Remove All Duplicates",
|
420 |
-
"Keep First Occurrence",
|
421 |
-
"Keep Last Occurrence"
|
422 |
-
])
|
423 |
-
if st.button("Handle Duplicates"):
|
424 |
-
original_count = len(df)
|
425 |
-
df = df.drop_duplicates(keep={
|
426 |
-
"Remove All Duplicates": False,
|
427 |
-
"Keep First Occurrence": 'first',
|
428 |
-
"Keep Last Occurrence": 'last'
|
429 |
-
}[dup_strategy])
|
430 |
-
cleaning_actions.append(f"Removed {original_count - len(df)} duplicates")
|
431 |
-
update_version(df)
|
432 |
-
st.success(f"Removed {original_count - len(df)} duplicates! ✅")
|
433 |
-
else:
|
434 |
-
st.success("✨ No duplicates found!")
|
435 |
-
|
436 |
-
# 3. Data Type Conversion
|
437 |
-
with tab3:
|
438 |
-
st.markdown("### 🔄 Convert Data Types")
|
439 |
-
col1, col2 = st.columns(2)
|
440 |
-
with col1:
|
441 |
-
st.dataframe(df.dtypes.reset_index().rename(columns={0: 'Type', 'index': 'Column'}))
|
442 |
-
with col2:
|
443 |
-
col_to_convert = st.selectbox("Select column to convert", df.columns)
|
444 |
-
new_type = st.selectbox("New Data Type", [
|
445 |
-
"String", "Integer", "Float",
|
446 |
-
"Boolean", "Datetime", "Category"
|
447 |
-
])
|
448 |
-
if st.button("Convert Data Type"):
|
449 |
-
try:
|
450 |
-
if new_type == "String":
|
451 |
-
df[col_to_convert] = df[col_to_convert].astype(str)
|
452 |
-
elif new_type == "Integer":
|
453 |
-
df[col_to_convert] = pd.to_numeric(df[col_to_convert], errors='coerce').astype('Int64')
|
454 |
-
elif new_type == "Float":
|
455 |
-
df[col_to_convert] = pd.to_numeric(df[col_to_convert], errors='coerce')
|
456 |
-
elif new_type == "Boolean":
|
457 |
-
df[col_to_convert] = df[col_to_convert].astype(bool)
|
458 |
-
elif new_type == "Datetime":
|
459 |
-
df[col_to_convert] = pd.to_datetime(df[col_to_convert], errors='coerce')
|
460 |
-
elif new_type == "Category":
|
461 |
-
df[col_to_convert] = df[col_to_convert].astype('category')
|
462 |
-
|
463 |
-
cleaning_actions.append(f"Converted {col_to_convert} to {new_type}")
|
464 |
-
update_version(df)
|
465 |
-
st.success("Data type converted successfully! ✅")
|
466 |
-
except Exception as e:
|
467 |
-
st.error(f"Conversion failed: {str(e)}")
|
468 |
-
|
469 |
-
# 4. Outlier Handling
|
470 |
-
with tab4:
|
471 |
-
st.markdown("### 📈 Handle Outliers")
|
472 |
-
numeric_cols = df.select_dtypes(include=np.number).columns.tolist()
|
473 |
-
if numeric_cols:
|
474 |
-
outlier_col = st.selectbox("Select numeric column", numeric_cols)
|
475 |
-
st.plotly_chart(px.box(df, y=outlier_col, title="Outlier Distribution"))
|
476 |
-
outlier_method = st.radio("Outlier Handling Method", ["Z-score", "IQR", "Manual"], horizontal=True)
|
477 |
-
if st.button("Remove Outliers"):
|
478 |
-
try:
|
479 |
-
original_df = df.copy()
|
480 |
-
if outlier_method == "Z-score":
|
481 |
-
from scipy import stats
|
482 |
-
z_scores = np.abs(stats.zscore(df[outlier_col]))
|
483 |
-
df = df[(z_scores < 3)] # Keep only values with zscore less than 3
|
484 |
-
cleaning_actions.append(f"Removed outliers from {outlier_col} using Z-score (threshold 3)")
|
485 |
-
elif outlier_method == "IQR":
|
486 |
-
Q1 = df[outlier_col].quantile(0.25)
|
487 |
-
Q3 = df[outlier_col].quantile(0.75)
|
488 |
-
IQR = Q3 - Q1
|
489 |
-
df = df[~((df[outlier_col] < (Q1 - 1.5 * IQR)) |(df[outlier_col] > (Q3 + 1.5 * IQR)))]
|
490 |
-
cleaning_actions.append(f"Removed outliers from {outlier_col} using IQR")
|
491 |
-
elif outlier_method == "Manual":
|
492 |
-
lower_bound = st.number_input("Lower Bound", value=df[outlier_col].min(), step=1.0)
|
493 |
-
upper_bound = st.number_input("Upper Bound", value=df[outlier_col].max(), step=1.0)
|
494 |
-
df = df[(df[outlier_col] >= lower_bound) & (df[outlier_col] <= upper_bound)]
|
495 |
-
cleaning_actions.append(f"Removed outliers from {outlier_col} using manual bounds")
|
496 |
-
update_version(df)
|
497 |
-
st.success("Outliers removed successfully! ✅")
|
498 |
-
except Exception as e:
|
499 |
-
st.error(f"Outlier removal failed: {str(e)}")
|
500 |
-
else:
|
501 |
-
st.info("ℹ️ No numeric columns found for outlier detection")
|
502 |
-
|
503 |
-
# Drop Column Functionality with Interface
|
504 |
-
st.subheader("🗑️ Drop Specific Columns")
|
505 |
-
cols_to_drop = st.multiselect("Select Columns to Drop", df.columns)
|
506 |
-
if st.button("Drop Selected Columns"):
|
507 |
-
try:
|
508 |
-
df = df.drop(columns=cols_to_drop) #Drop the cols here.
|
509 |
-
cleaning_actions.append(f"Dropped columns: {', '.join(cols_to_drop)}")
|
510 |
-
update_version(df)
|
511 |
-
st.success(f"Columns dropped successfully! ✅")
|
512 |
-
except (KeyError):
|
513 |
-
st.error("Invalid column(s) selected.")
|
514 |
-
except Exception as e:
|
515 |
-
st.error(f"An unexpected error occurred: {e}")
|
516 |
-
# Label Encoding (Categorical to Numeric)
|
517 |
-
st.subheader("🔢 Label Encoding")
|
518 |
-
if st.button("Encode Categorical Columns"):
|
519 |
-
try:
|
520 |
-
le = LabelEncoder()
|
521 |
-
categorical_cols = df.select_dtypes(include=['object', 'category']).columns
|
522 |
-
for col in categorical_cols:
|
523 |
-
df[col] = df[col].astype(str) # Ensure all cols are string
|
524 |
-
df[col] = le.fit_transform(df[col])
|
525 |
-
cleaning_actions.append("Applied Label Encoding to categorical columns")
|
526 |
-
update_version(df)
|
527 |
-
st.success("Label encoding applied successfully! ✅")
|
528 |
-
except Exception as e:
|
529 |
-
st.error(f"Label encoding failed: {str(e)}")
|
530 |
-
|
531 |
-
# Live Data Preview after every cleaning action
|
532 |
-
st.subheader("✨ Live Data Preview")
|
533 |
-
st.dataframe(df.head(10)) # show 10 rows
|
534 |
-
# Save Cleaned Data with Enhanced Feedback
|
535 |
-
if st.button("💾 Save Cleaned Data"):
|
536 |
-
st.session_state.cleaned_data = df
|
537 |
-
st.balloons()
|
538 |
-
|
539 |
-
# Generate comprehensive report
|
540 |
-
from pandas_profiling import ProfileReport
|
541 |
-
pr = ProfileReport(df, title="Cleaned Data Report")
|
542 |
-
st_profile_report(pr)
|
543 |
-
|
544 |
-
# Show cleaning log with diffs
|
545 |
-
st.subheader("📝 Cleaning Log")
|
546 |
-
st.table(pd.DataFrame({
|
547 |
-
"Step": range(1, len(cleaning_actions)+1),
|
548 |
-
"Action": cleaning_actions
|
549 |
-
}))
|
550 |
-
|
551 |
-
# Show dataset comparison
|
552 |
-
col1, col2 = st.columns(2)
|
553 |
-
with col1:
|
554 |
-
st.write("Original Data Shape:", st.session_state.raw_data.shape)
|
555 |
-
with col2:
|
556 |
-
st.write("Cleaned Data Shape:", df.shape)
|
557 |
-
|
558 |
-
st.success("✅ Cleaned data saved successfully! You can now proceed to analysis.")
|
559 |
-
elif app_mode == "Advanced EDA":
|
560 |
-
st.title("🔍 Advanced Exploratory Data Analysis")
|
561 |
-
st.markdown("""
|
562 |
-
**Interactive Data Exploration** with optimized visualizations for fast insights.
|
563 |
-
Uncover patterns and relationships in your data with beautiful, responsive plots.
|
564 |
-
""")
|
565 |
|
566 |
-
|
567 |
-
|
|
|
|
|
|
|
568 |
st.stop()
|
569 |
-
|
570 |
-
df = st.session_state.cleaned_data
|
571 |
-
|
572 |
-
#
|
573 |
-
if 'eda_config' not in st.session_state:
|
574 |
-
st.session_state.eda_config = {
|
575 |
-
'plot_type': "Histogram",
|
576 |
-
'x_col': df.columns[0] if len(df.columns) > 0 else None,
|
577 |
-
'y_col': df.columns[1] if len(df.columns) > 1 else None,
|
578 |
-
'z_col': df.columns[2] if len(df.columns) > 2 else None,
|
579 |
-
'color_col': None,
|
580 |
-
'facet_col': None,
|
581 |
-
'hover_data_cols': [],
|
582 |
-
'color_palette': "Viridis",
|
583 |
-
'filter_col': None,
|
584 |
-
'filter_options': []
|
585 |
-
}
|
586 |
-
|
587 |
-
# Main Layout Columns
|
588 |
col1, col2 = st.columns([1, 3])
|
589 |
-
|
590 |
with col1:
|
591 |
-
st.
|
592 |
-
|
593 |
-
|
594 |
-
|
595 |
-
|
596 |
-
|
597 |
-
|
598 |
-
|
599 |
-
|
600 |
-
|
601 |
-
selected_category = st.selectbox("Plot Category", list(plot_types.keys()))
|
602 |
-
st.session_state.eda_config['plot_type'] = st.selectbox(
|
603 |
-
"Plot Type",
|
604 |
-
plot_types[selected_category]
|
605 |
-
)
|
606 |
-
|
607 |
-
# Dynamic Column Selectors
|
608 |
-
plot_type = st.session_state.eda_config['plot_type']
|
609 |
-
|
610 |
-
if plot_type in ["Histogram", "Box Plot", "Violin Plot", "Density Plot", "Bar Chart", "Pie Chart"]:
|
611 |
-
st.session_state.eda_config['x_col'] = st.selectbox(
|
612 |
-
"X Axis",
|
613 |
-
df.columns,
|
614 |
-
index=df.columns.get_loc(st.session_state.eda_config['x_col'])
|
615 |
-
if st.session_state.eda_config['x_col'] in df.columns else 0
|
616 |
-
)
|
617 |
-
|
618 |
-
if plot_type in ["Scatter Plot", "Line Plot", "Box Plot", "Violin Plot", "Density Plot"]:
|
619 |
-
st.session_state.eda_config['y_col'] = st.selectbox(
|
620 |
-
"Y Axis",
|
621 |
-
df.columns,
|
622 |
-
index=df.columns.get_loc(st.session_state.eda_config['y_col'])
|
623 |
-
if st.session_state.eda_config['y_col'] in df.columns else 0
|
624 |
-
)
|
625 |
-
|
626 |
-
if plot_type in ["3D Scatter", "3D Surface"]:
|
627 |
-
st.session_state.eda_config['z_col'] = st.selectbox(
|
628 |
-
"Z Axis",
|
629 |
-
df.columns,
|
630 |
-
index=df.columns.get_loc(st.session_state.eda_config['z_col'])
|
631 |
-
if st.session_state.eda_config['z_col'] in df.columns else 0
|
632 |
-
)
|
633 |
-
|
634 |
-
# Additional Options
|
635 |
-
with st.expander("🎨 Customization"):
|
636 |
-
st.session_state.eda_config['color_col'] = st.selectbox(
|
637 |
-
"Color By",
|
638 |
-
[None] + list(df.columns)
|
639 |
-
)
|
640 |
-
st.session_state.eda_config['facet_col'] = st.selectbox(
|
641 |
-
"Facet By",
|
642 |
-
[None] + list(df.columns)
|
643 |
-
)
|
644 |
-
st.session_state.eda_config['hover_data_cols'] = st.multiselect(
|
645 |
-
"Hover Data",
|
646 |
-
df.columns
|
647 |
-
)
|
648 |
-
st.session_state.eda_config['color_palette'] = st.selectbox(
|
649 |
-
"Color Palette",
|
650 |
-
px.colors.named_colorscales()
|
651 |
-
)
|
652 |
-
|
653 |
-
# Data Filtering
|
654 |
-
with st.expander("🔎 Data Filtering"):
|
655 |
-
filter_col = st.selectbox(
|
656 |
-
"Filter Column",
|
657 |
-
[None] + list(df.columns)
|
658 |
-
)
|
659 |
-
if filter_col:
|
660 |
-
unique_values = df[filter_col].unique()
|
661 |
-
selected_values = st.multiselect(
|
662 |
-
f"Select {filter_col} values",
|
663 |
-
unique_values,
|
664 |
-
default=unique_values
|
665 |
-
)
|
666 |
-
df = df[df[filter_col].isin(selected_values)]
|
667 |
-
|
668 |
with col2:
|
669 |
-
st.
|
670 |
-
|
671 |
-
|
672 |
-
|
673 |
-
|
674 |
-
|
675 |
-
|
676 |
-
|
677 |
-
|
678 |
-
|
679 |
-
|
680 |
-
|
681 |
-
color_discrete_sequence=[config['color_palette']]
|
682 |
-
)
|
683 |
-
|
684 |
-
elif plot_type == "Scatter Plot":
|
685 |
-
return px.scatter(
|
686 |
-
df, x=config['x_col'], y=config['y_col'],
|
687 |
-
color=config['color_col'],
|
688 |
-
hover_data=config['hover_data_cols']
|
689 |
-
)
|
690 |
-
|
691 |
-
elif plot_type == "Box Plot":
|
692 |
-
return px.box(
|
693 |
-
df, x=config['x_col'], y=config['y_col'],
|
694 |
-
color=config['color_col']
|
695 |
-
)
|
696 |
-
|
697 |
-
elif plot_type == "Violin Plot":
|
698 |
-
return px.violin(
|
699 |
-
df, x=config['x_col'], y=config['y_col'],
|
700 |
-
color=config['color_col'],
|
701 |
-
box=True
|
702 |
-
)
|
703 |
-
|
704 |
-
elif plot_type == "Heatmap":
|
705 |
-
numeric_df = df.select_dtypes(include=np.number)
|
706 |
-
corr = numeric_df.corr()
|
707 |
-
return px.imshow(
|
708 |
-
corr,
|
709 |
-
text_auto=True,
|
710 |
-
color_continuous_scale=config['color_palette']
|
711 |
-
)
|
712 |
-
|
713 |
-
elif plot_type == "3D Scatter":
|
714 |
-
return px.scatter_3d(
|
715 |
-
df, x=config['x_col'], y=config['y_col'], z=config['z_col'],
|
716 |
-
color=config['color_col']
|
717 |
-
)
|
718 |
-
|
719 |
-
elif plot_type == "Bar Chart":
|
720 |
-
return px.bar(
|
721 |
-
df, x=config['x_col'], y=config['y_col'],
|
722 |
-
color=config['color_col']
|
723 |
-
)
|
724 |
-
|
725 |
-
elif plot_type == "Pie Chart":
|
726 |
-
return px.pie(
|
727 |
-
df, names=config['x_col'], values=config['y_col'],
|
728 |
-
color_discrete_sequence=[config['color_palette']]
|
729 |
-
)
|
730 |
-
|
731 |
-
elif plot_type == "Line Plot":
|
732 |
-
return px.line(
|
733 |
-
df, x=config['x_col'], y=config['y_col'],
|
734 |
-
color=config['color_col']
|
735 |
-
)
|
736 |
-
|
737 |
-
elif plot_type == "Pair Plot":
|
738 |
-
numeric_cols = df.select_dtypes(include=np.number).columns
|
739 |
-
return px.scatter_matrix(
|
740 |
-
df[numeric_cols],
|
741 |
-
color=config['color_col']
|
742 |
-
)
|
743 |
-
|
744 |
-
elif plot_type == "Parallel Coordinates":
|
745 |
-
numeric_df = df.select_dtypes(include=np.number)
|
746 |
-
return px.parallel_coordinates(
|
747 |
-
numeric_df,
|
748 |
-
color_continuous_scale=config['color_palette']
|
749 |
-
)
|
750 |
-
|
751 |
-
elif plot_type == "Density Plot":
|
752 |
-
return px.density_contour(
|
753 |
-
df, x=config['x_col'], y=config['y_col'],
|
754 |
-
color=config['color_col']
|
755 |
-
)
|
756 |
-
|
757 |
-
except Exception as e:
|
758 |
-
st.error(f"Plot generation error: {str(e)}")
|
759 |
-
return None
|
760 |
-
|
761 |
-
# Generate and display plot
|
762 |
-
fig = generate_plot(df, plot_type, config)
|
763 |
-
if fig:
|
764 |
st.plotly_chart(fig, use_container_width=True)
|
|
|
|
|
765 |
|
766 |
-
|
767 |
-
|
768 |
-
|
769 |
-
|
770 |
-
|
771 |
-
|
772 |
-
if plot_type in ["Scatter Plot", "Line Plot"]:
|
773 |
-
st.write(f"**Correlation between {config['x_col']} and {config['y_col']}**")
|
774 |
-
corr = df[[config['x_col'], config['y_col']]].corr().iloc[0,1]
|
775 |
-
st.metric("Pearson Correlation", f"{corr:.2f}")
|
776 |
-
|
777 |
-
if plot_type == "Heatmap":
|
778 |
-
st.write("**Correlation Matrix**")
|
779 |
-
numeric_df = df.select_dtypes(include=np.number)
|
780 |
-
st.dataframe(numeric_df.corr())
|
781 |
-
|
782 |
-
# Data Summary Section
|
783 |
-
st.header("📝 Data Summary")
|
784 |
-
with st.expander("Show Data Summary"):
|
785 |
-
col1, col2 = st.columns(2)
|
786 |
-
with col1:
|
787 |
-
st.write("**Data Shape**")
|
788 |
-
st.write(f"Rows: {df.shape[0]}")
|
789 |
-
st.write(f"Columns: {df.shape[1]}")
|
790 |
-
|
791 |
-
with col2:
|
792 |
-
st.write("**Data Types**")
|
793 |
-
st.dataframe(df.dtypes.reset_index().rename(columns={
|
794 |
-
'index': 'Column', 0: 'Type'
|
795 |
-
}))
|
796 |
-
|
797 |
-
st.write("**Sample Data**")
|
798 |
-
st.dataframe(df.head())
|
799 |
-
|
800 |
-
# Model Selection
|
801 |
-
st.subheader("🤖 Model Selection")
|
802 |
-
if problem_type == "Regression":
|
803 |
-
model_options = ["Linear Regression", "Decision Tree", "Random Forest", "Gradient Boosting", "SVM", "Neural Network"]
|
804 |
-
else: # Classification
|
805 |
-
model_options = ["Logistic Regression", "Decision Tree", "Random Forest", "Gradient Boosting", "SVM", "Neural Network", "KNN", "Naive Bayes"]
|
806 |
-
model_name = st.selectbox("Select Model", model_options, help="Choose a model.")
|
807 |
-
|
808 |
-
# Hyperparameter Tuning
|
809 |
-
st.subheader("🎛️ Hyperparameter Tuning")
|
810 |
-
with st.expander("Configure Hyperparameters", expanded=True):
|
811 |
-
if model_name == "Random Forest":
|
812 |
-
n_estimators = st.slider("Number of Estimators", 10, 200, 100)
|
813 |
-
max_depth = st.slider("Max Depth", 3, 20, 10)
|
814 |
-
min_samples_split = st.slider("Min Samples Split", 2, 10, 2)
|
815 |
-
min_samples_leaf = st.slider("Min Samples Leaf", 1, 10, 1)
|
816 |
-
hyperparams = {
|
817 |
-
'n_estimators': n_estimators,
|
818 |
-
'max_depth': max_depth,
|
819 |
-
'min_samples_split': min_samples_split,
|
820 |
-
'min_samples_leaf': min_samples_leaf
|
821 |
-
}
|
822 |
-
elif model_name == "Gradient Boosting": # Correct placement of elif
|
823 |
-
learning_rate = st.slider("Learning Rate", 0.01, 1.0, 0.1)
|
824 |
-
n_estimators = st.slider("Number of Estimators", 10, 200, 100)
|
825 |
-
max_depth = st.slider("Max Depth", 3, 20, 10)
|
826 |
-
hyperparams = {
|
827 |
-
'learning_rate': learning_rate,
|
828 |
-
'n_estimators': n_estimators,
|
829 |
-
'max_depth': max_depth
|
830 |
-
}
|
831 |
-
elif model_name == "Neural Network":
|
832 |
-
from tensorflow.keras.models import Sequential
|
833 |
-
from tensorflow.keras.layers import Dense, Dropout, BatchNormalization
|
834 |
-
from tensorflow.keras.optimizers import Adam, Nadam, RMSprop, SGD
|
835 |
-
|
836 |
-
hidden_layers = st.slider("Number of Hidden Layers", 1, 5, 2)
|
837 |
-
neurons_per_layer = st.slider("Neurons per Layer", 10, 200, 50)
|
838 |
-
activation = st.selectbox("Activation Function",
|
839 |
-
["relu", "tanh", "sigmoid", "selu", "swish"])
|
840 |
-
dropout_rate = st.slider("Dropout Rate", 0.0, 0.5, 0.2)
|
841 |
-
initializer = st.selectbox("Weight Initializer",
|
842 |
-
["glorot_uniform", "he_normal", "lecun_uniform"])
|
843 |
-
learning_rate = st.slider("Learning Rate", 0.0001, 0.1, 0.001, format="%.4f")
|
844 |
-
optimizer_choice = st.selectbox("Optimizer",
|
845 |
-
["Adam", "Nadam", "RMSprop", "SGD"])
|
846 |
-
batch_norm = st.checkbox("Batch Normalization", value=True)
|
847 |
-
regularization = st.checkbox("L2 Regularization")
|
848 |
-
epochs = st.slider("Epochs", 10, 200, 50)
|
849 |
-
batch_size = st.slider("Batch Size", 16, 128, 32)
|
850 |
-
hyperparams = {
|
851 |
-
'hidden_layers': hidden_layers,
|
852 |
-
'neurons_per_layer': neurons_per_layer,
|
853 |
-
'activation': activation,
|
854 |
-
'dropout_rate': dropout_rate,
|
855 |
-
'initializer': initializer,
|
856 |
-
'learning_rate': learning_rate,
|
857 |
-
'optimizer_choice': optimizer_choice,
|
858 |
-
'batch_norm': batch_norm,
|
859 |
-
'regularization': regularization,
|
860 |
-
'epochs': epochs,
|
861 |
-
'batch_size': batch_size
|
862 |
-
}
|
863 |
-
else:
|
864 |
-
hyperparams = {}
|
865 |
-
|
866 |
-
# Train-Test Split
|
867 |
-
st.subheader("✂️ Train-Test Split")
|
868 |
-
test_size = st.slider("Test Size", 0.1, 0.5, 0.2, help="Proportion of the dataset to include in the test split.")
|
869 |
-
|
870 |
-
# Model Training
|
871 |
-
if st.button("🚀 Train Model"):
|
872 |
-
with st.spinner("Training model..."):
|
873 |
-
try:
|
874 |
-
X = df[feature_columns]
|
875 |
-
y = df[target_column]
|
876 |
-
|
877 |
-
# Check if X is empty
|
878 |
-
if X.empty:
|
879 |
-
st.error("No features were selected. Please select feature columns.")
|
880 |
-
st.stop()
|
881 |
-
|
882 |
-
# Train-Test Split
|
883 |
-
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random_state=42)
|
884 |
-
|
885 |
-
# Preprocessing Pipeline
|
886 |
-
numeric_features = X.select_dtypes(include=np.number).columns
|
887 |
-
categorical_features = X.select_dtypes(exclude=np.number).columns
|
888 |
-
|
889 |
-
numeric_transformer = Pipeline(steps=[
|
890 |
-
('imputer', SimpleImputer(strategy='median')),
|
891 |
-
('scaler', StandardScaler())
|
892 |
-
])
|
893 |
-
|
894 |
-
categorical_transformer = Pipeline(steps=[
|
895 |
-
('imputer', SimpleImputer(strategy='most_frequent')),
|
896 |
-
('onehot', OneHotEncoder(handle_unknown='ignore'))
|
897 |
-
])
|
898 |
-
|
899 |
-
preprocessor = ColumnTransformer(
|
900 |
-
transformers=[
|
901 |
-
('num', numeric_transformer, numeric_features),
|
902 |
-
('cat', categorical_transformer, categorical_features)
|
903 |
-
])
|
904 |
-
|
905 |
-
X_train_processed = preprocessor.fit_transform(X_train)
|
906 |
-
X_test_processed = preprocessor.transform(X_test)
|
907 |
-
|
908 |
-
# Model Training
|
909 |
-
if model_name == "Linear Regression":
|
910 |
-
model = LinearRegression()
|
911 |
-
elif model_name == "Logistic Regression":
|
912 |
-
model = LogisticRegression(max_iter=1000)
|
913 |
-
elif model_name == "Decision Tree":
|
914 |
-
if problem_type == "Regression":
|
915 |
-
model = DecisionTreeRegressor()
|
916 |
-
else:
|
917 |
-
model = DecisionTreeClassifier()
|
918 |
-
elif model_name == "Random Forest":
|
919 |
-
if problem_type == "Regression":
|
920 |
-
model = RandomForestRegressor(**hyperparams)
|
921 |
-
else:
|
922 |
-
model = RandomForestClassifier(**hyperparams)
|
923 |
-
elif model_name == "Gradient Boosting":
|
924 |
-
if problem_type == "Regression":
|
925 |
-
model = GradientBoostingRegressor(**hyperparams)
|
926 |
-
else:
|
927 |
-
model = GradientBoostingClassifier(**hyperparams)
|
928 |
-
elif model_name == "SVM":
|
929 |
-
if problem_type == "Regression":
|
930 |
-
model = SVR()
|
931 |
-
else:
|
932 |
-
model = SVC()
|
933 |
-
elif model_name == "Neural Network":
|
934 |
-
from tensorflow.keras.models import Sequential
|
935 |
-
from tensorflow.keras.layers import Dense, Dropout, BatchNormalization
|
936 |
-
from tensorflow.keras.optimizers import Adam, Nadam, RMSprop, SGD
|
937 |
-
|
938 |
-
# Build a new model with the parameters
|
939 |
-
model = Sequential()
|
940 |
-
model.add(layers.Input(shape=(X_train_processed.shape[1],)))
|
941 |
-
|
942 |
-
for i in range(hyperparams['hidden_layers']):
|
943 |
-
model.add(Dense(hyperparams['neurons_per_layer'],
|
944 |
-
activation=hyperparams['activation'],
|
945 |
-
kernel_initializer=hyperparams['initializer']))
|
946 |
-
if hyperparams['batch_norm']:
|
947 |
-
model.add(BatchNormalization())
|
948 |
-
model.add(Dropout(hyperparams['dropout_rate']))
|
949 |
-
|
950 |
-
# Output layer
|
951 |
-
output_activation = 'linear' if problem_type == "Regression" else 'softmax'
|
952 |
-
output_units = 1 if problem_type == "Regression" else len(np.unique(y_train))
|
953 |
-
model.add(Dense(output_units, activation=output_activation))
|
954 |
-
|
955 |
-
# Configure optimizer
|
956 |
-
optimizers = {
|
957 |
-
"Adam": Adam(learning_rate=hyperparams['learning_rate']),
|
958 |
-
"Nadam": Nadam(learning_rate=hyperparams['learning_rate']),
|
959 |
-
"RMSprop": RMSprop(learning_rate=hyperparams['learning_rate']),
|
960 |
-
"SGD": SGD(learning_rate=hyperparams['learning_rate'], momentum=0.9)
|
961 |
-
}
|
962 |
-
optimizer = optimizers[hyperparams['optimizer_choice']]
|
963 |
-
|
964 |
-
model.compile(optimizer=optimizer,
|
965 |
-
loss='mse' if problem_type == "Regression" else 'sparse_categorical_crossentropy',
|
966 |
-
metrics=['mae'] if problem_type == "Regression" else ['accuracy'])
|
967 |
-
elif model_name == "KNN":
|
968 |
-
from sklearn.neighbors import KNeighborsClassifier
|
969 |
-
model = KNeighborsClassifier()
|
970 |
-
elif model_name == "Naive Bayes":
|
971 |
-
from sklearn.naive_bayes import GaussianNB
|
972 |
-
model = GaussianNB()
|
973 |
-
|
974 |
-
# Train the model
|
975 |
-
if model_name == "Neural Network": # Only for the neural network
|
976 |
-
history = model.fit(X_train_processed, y_train,
|
977 |
-
epochs=hyperparams['epochs'],
|
978 |
-
batch_size=hyperparams['batch_size'],
|
979 |
-
validation_data=(X_test_processed, y_test),
|
980 |
-
verbose=0)
|
981 |
-
|
982 |
-
else:
|
983 |
-
model.fit(X_train_processed, y_train)
|
984 |
-
# Store model and preprocessor
|
985 |
-
st.session_state.model = Pipeline(steps=[('preprocessor', preprocessor), ('model', model)])
|
986 |
-
st.session_state.preprocessor = preprocessor
|
987 |
-
|
988 |
-
# Store the test data for insights and predictions
|
989 |
-
st.session_state.X_train_selected = X_train_processed
|
990 |
-
st.session_state.X_test_selected = X_test_processed
|
991 |
-
st.session_state.y_train = y_train
|
992 |
-
st.session_state.y_test = y_test
|
993 |
-
|
994 |
-
# Model Evaluation
|
995 |
-
if problem_type == "Regression":
|
996 |
-
y_pred = model.predict(X_test_processed)
|
997 |
-
mse = mean_squared_error(y_test, y_pred)
|
998 |
-
rmse = np.sqrt(mse)
|
999 |
-
mae = mean_absolute_error(y_test, y_pred)
|
1000 |
-
r2 = r2_score(y_test, y_pred)
|
1001 |
-
st.write(f"Mean Squared Error: {mse:.4f}")
|
1002 |
-
st.write(f"Root Mean Squared Error: {rmse:.4f}")
|
1003 |
-
st.write(f"Mean Absolute Error: {mae:.4f}")
|
1004 |
-
st.write(f"R-squared: {r2:.4f}")
|
1005 |
-
else: # Classification
|
1006 |
-
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_matrix, classification_report
|
1007 |
-
y_pred = model.predict(X_test_processed)
|
1008 |
-
if model_name == "Neural Network": # Neural network output probabilities
|
1009 |
-
y_pred = np.argmax(model.predict(X_test_processed), axis=1)
|
1010 |
-
accuracy = accuracy_score(y_test, y_pred)
|
1011 |
-
precision = precision_score(y_test, y_pred, average='weighted', zero_division=0)
|
1012 |
-
recall = recall_score(y_test, y_pred, average='weighted', zero_division=0)
|
1013 |
-
f1 = f1_score(y_test, y_pred, average='weighted', zero_division=0)
|
1014 |
-
st.write(f"Accuracy: {accuracy:.4f}")
|
1015 |
-
st.write(f"Precision: {precision:.4f}")
|
1016 |
-
st.write(f"Recall: {recall:.4f}")
|
1017 |
-
st.write(f"F1 Score: {f1:.4f}")
|
1018 |
-
st.write("Classification Report:")
|
1019 |
-
st.text(classification_report(y_test, y_pred))
|
1020 |
-
# confusion matrix
|
1021 |
-
st.write("Confusion Matrix:")
|
1022 |
-
conf_matrix = confusion_matrix(y_test, y_pred)
|
1023 |
-
st.write(conf_matrix)
|
1024 |
-
|
1025 |
-
# Visualization
|
1026 |
-
st.subheader("📊 Model Performance Visualization")
|
1027 |
-
if problem_type == "Regression":
|
1028 |
-
fig, ax = plt.subplots()
|
1029 |
-
ax.scatter(y_test, y_pred)
|
1030 |
-
ax.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], 'k--', lw=2)
|
1031 |
-
ax.set_xlabel('Actual')
|
1032 |
-
ax.set_ylabel('Predicted')
|
1033 |
-
ax.set_title('Actual vs Predicted')
|
1034 |
-
st.pyplot(fig)
|
1035 |
-
elif model_name == "Neural Network":
|
1036 |
-
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 4))
|
1037 |
-
ax1.plot(history.history['loss'], label='Train Loss')
|
1038 |
-
ax1.plot(history.history['val_loss'], label='Validation Loss')
|
1039 |
-
ax1.set_title('Loss Evolution')
|
1040 |
-
ax1.set_xlabel('Epoch')
|
1041 |
-
ax1.set_ylabel('Loss')
|
1042 |
-
ax1.legend()
|
1043 |
-
|
1044 |
-
# Plot accuracy/metric
|
1045 |
-
if problem_type == "Classification":
|
1046 |
-
ax2.plot(history.history['accuracy'], label='Train Accuracy')
|
1047 |
-
ax2.plot(history.history['val_accuracy'], label='Validation Accuracy')
|
1048 |
-
ax2.set_title('Accuracy Evolution')
|
1049 |
-
ax2.set_ylabel('Accuracy')
|
1050 |
-
else:
|
1051 |
-
ax2.plot(history.history['mae'], label='Train MAE')
|
1052 |
-
ax2.plot(history.history['val_mae'], label='Validation MAE')
|
1053 |
-
ax2.set_title('MAE Evolution')
|
1054 |
-
ax2.set_ylabel('MAE')
|
1055 |
-
|
1056 |
-
ax2.set_xlabel('Epoch')
|
1057 |
-
ax2.legend()
|
1058 |
-
st.pyplot(fig)
|
1059 |
-
|
1060 |
-
else: # Classification confusion matrix
|
1061 |
-
from sklearn.metrics import confusion_matrix
|
1062 |
-
conf_matrix = confusion_matrix(y_test, y_pred)
|
1063 |
-
fig, ax = plt.subplots()
|
1064 |
-
sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues', ax=ax)
|
1065 |
-
ax.set_xlabel('Predicted Labels')
|
1066 |
-
ax.set_ylabel('True Labels')
|
1067 |
-
ax.set_title('Confusion Matrix')
|
1068 |
-
st.pyplot(fig)
|
1069 |
-
st.success("Model trained successfully!")
|
1070 |
-
except Exception as e:
|
1071 |
-
st.error(f"An error occurred during training: {e}")
|
1072 |
-
|
1073 |
-
if st.session_state.model is not None:
|
1074 |
-
st.subheader("💾 Save Model")
|
1075 |
-
model_filename = st.text_input("Enter Model Filename (without extension)", "trained_model")
|
1076 |
-
if st.button("Save Model"):
|
1077 |
-
try:
|
1078 |
-
joblib.dump(st.session_state.model, f"{model_filename}.joblib")
|
1079 |
-
st.success(f"Model saved as {model_filename}.joblib")
|
1080 |
-
except Exception as e:
|
1081 |
-
st.error(f"Error saving model: {e}")
|
1082 |
-
else:
|
1083 |
-
st.warning("No trained model available. Train a model first to enable saving.")
|
1084 |
-
|
1085 |
-
|
1086 |
-
# Insights Section
|
1087 |
-
elif app_mode == "Insights":
|
1088 |
-
st.title("📊 Model Insights & Explainability")
|
1089 |
-
st.markdown("""
|
1090 |
-
**Understand and Interpret Your Model** with advanced explainability tools and visualizations.
|
1091 |
-
Gain deeper insights into model behavior and predictions.
|
1092 |
-
""")
|
1093 |
-
|
1094 |
-
if 'model' not in st.session_state or st.session_state.model is None:
|
1095 |
-
st.warning("Please train a model in the Model Training section first.")
|
1096 |
st.stop()
|
1097 |
-
|
1098 |
-
|
1099 |
-
|
1100 |
-
|
1101 |
-
|
1102 |
-
|
1103 |
-
|
1104 |
-
|
1105 |
-
|
1106 |
-
|
1107 |
-
|
1108 |
-
|
1109 |
-
if
|
1110 |
-
importances = model.feature_importances_
|
1111 |
-
feature_names = preprocessor.get_feature_names_out()
|
1112 |
-
importance_df = pd.DataFrame({
|
1113 |
-
'Feature': feature_names,
|
1114 |
-
'Importance': importances
|
1115 |
-
}).sort_values('Importance', ascending=False)
|
1116 |
-
|
1117 |
-
fig, ax = plt.subplots()
|
1118 |
-
sns.barplot(x='Importance', y='Feature', data=importance_df.head(10), ax=ax)
|
1119 |
-
ax.set_title('Top 10 Feature Importances')
|
1120 |
-
st.pyplot(fig)
|
1121 |
-
else:
|
1122 |
-
st.info("Feature importance not available for this model type.")
|
1123 |
-
|
1124 |
-
# SHAP Values
|
1125 |
-
st.subheader("📊 SHAP Values")
|
1126 |
-
if st.checkbox("Calculate SHAP Values (Warning: May be slow for large datasets)"):
|
1127 |
try:
|
1128 |
-
|
1129 |
-
|
1130 |
-
|
1131 |
-
|
1132 |
-
|
1133 |
-
|
1134 |
-
|
1135 |
-
|
1136 |
-
|
1137 |
-
|
1138 |
-
|
1139 |
-
|
1140 |
-
|
1141 |
-
|
1142 |
-
# Force Plot for Individual Predictions
|
1143 |
-
st.write("### Individual Prediction Explanation")
|
1144 |
-
sample_idx = st.slider("Select Sample Index", 0, len(st.session_state.X_test_selected) - 1, 0)
|
1145 |
-
fig, ax = plt.subplots()
|
1146 |
-
shap.force_plot(explainer.expected_value, shap_values[sample_idx], st.session_state.X_test_selected[sample_idx],
|
1147 |
-
feature_names=feature_names, matplotlib=True, show=False)
|
1148 |
-
st.pyplot(fig)
|
1149 |
else:
|
1150 |
-
|
1151 |
-
|
1152 |
-
|
1153 |
-
|
1154 |
-
|
1155 |
-
|
1156 |
-
|
1157 |
-
|
1158 |
-
|
1159 |
-
|
1160 |
-
|
1161 |
-
|
1162 |
-
|
1163 |
-
|
1164 |
-
|
1165 |
-
|
1166 |
-
|
1167 |
-
|
1168 |
-
|
1169 |
-
|
1170 |
-
# Partial Dependence Plots
|
1171 |
-
st.subheader("📈 Partial Dependence Plots")
|
1172 |
-
if hasattr(model, 'predict'):
|
1173 |
-
feature_to_plot = st.selectbox("Select Feature for PDP", preprocessor.get_feature_names_out())
|
1174 |
-
if st.button("Generate PDP"):
|
1175 |
-
from sklearn.inspection import PartialDependenceDisplay
|
1176 |
-
fig, ax = plt.subplots()
|
1177 |
-
PartialDependenceDisplay.from_estimator(
|
1178 |
-
model, st.session_state.X_test_selected,
|
1179 |
-
features=[feature_to_plot],
|
1180 |
-
feature_names=preprocessor.get_feature_names_out(),
|
1181 |
-
ax=ax
|
1182 |
)
|
1183 |
-
st.
|
1184 |
-
|
1185 |
-
# Model Performance Over Time
|
1186 |
-
st.subheader("⏳ Model Performance Over Time")
|
1187 |
-
if st.checkbox("Track Performance Over Time"):
|
1188 |
-
performance_history = {
|
1189 |
-
'timestamp': [],
|
1190 |
-
'metric': [],
|
1191 |
-
'value': []
|
1192 |
-
}
|
1193 |
-
|
1194 |
-
if hasattr(model, 'predict'):
|
1195 |
-
y_pred = model.predict(st.session_state.X_test_selected)
|
1196 |
-
mse = mean_squared_error(st.session_state.y_test, y_pred)
|
1197 |
-
performance_history['timestamp'].append(datetime.now())
|
1198 |
-
performance_history['metric'].append('MSE')
|
1199 |
-
performance_history['value'].append(mse)
|
1200 |
-
|
1201 |
-
performance_df = pd.DataFrame(performance_history)
|
1202 |
-
st.line_chart(performance_df.set_index('timestamp'))
|
1203 |
-
|
1204 |
-
# Model Debugging
|
1205 |
-
st.subheader("🐛 Model Debugging")
|
1206 |
-
if st.checkbox("Enable Debug Mode"):
|
1207 |
-
st.write("### Model Parameters")
|
1208 |
-
st.json(model.get_params())
|
1209 |
-
|
1210 |
-
st.write("### Training Data Summary")
|
1211 |
-
st.write(f"Number of Samples: {st.session_state.X_train_selected.shape[0]}")
|
1212 |
-
st.write(f"Number of Features: {st.session_state.X_train_selected.shape[1]}")
|
1213 |
-
|
1214 |
-
# Export Insights
|
1215 |
-
st.subheader("💾 Export Insights")
|
1216 |
-
if st.button("Export Insights as PDF"):
|
1217 |
-
try:
|
1218 |
-
from fpdf import FPDF
|
1219 |
-
pdf = FPDF()
|
1220 |
-
pdf.add_page()
|
1221 |
-
pdf.set_font("Arial", size=12)
|
1222 |
-
pdf.cell(200, 10, txt="Model Insights Report", ln=True, align='C')
|
1223 |
-
pdf.cell(200, 10, txt=f"Model Type: {type(model).__name__}", ln=True)
|
1224 |
-
pdf.cell(200, 10, txt=f"Problem Type: {'Regression' if hasattr(model, 'predict') else 'Classification'}", ln=True)
|
1225 |
-
pdf.output("model_insights.pdf")
|
1226 |
-
st.success("Insights exported successfully!")
|
1227 |
except Exception as e:
|
1228 |
-
st.error(f"
|
1229 |
|
1230 |
-
# Predictions Section
|
1231 |
elif app_mode == "Predictions":
|
1232 |
-
st.title("🔮
|
1233 |
-
|
1234 |
-
|
1235 |
-
|
1236 |
-
""")
|
1237 |
-
|
1238 |
-
if 'model' not in st.session_state or st.session_state.model is None:
|
1239 |
-
st.warning("Please train a model in the Model Training section first.")
|
1240 |
st.stop()
|
1241 |
-
|
1242 |
-
model = st.session_state.model
|
1243 |
-
|
1244 |
-
|
1245 |
-
|
1246 |
-
|
1247 |
-
|
1248 |
-
|
1249 |
-
|
1250 |
-
|
1251 |
-
|
1252 |
-
|
1253 |
-
|
1254 |
-
|
1255 |
-
|
1256 |
-
|
1257 |
-
|
1258 |
-
|
1259 |
-
|
1260 |
-
|
1261 |
-
|
1262 |
-
|
1263 |
-
|
1264 |
-
|
1265 |
-
|
1266 |
-
|
1267 |
-
|
1268 |
-
|
1269 |
-
|
1270 |
-
|
1271 |
-
|
1272 |
-
|
1273 |
-
# Use KernelExplainer or TreeExplainer, checking if the model has the property first
|
1274 |
-
if hasattr(model, 'predict'):
|
1275 |
-
explainer = shap.TreeExplainer(model)
|
1276 |
-
shap_values = explainer.shap_values(input_processed)
|
1277 |
-
else:
|
1278 |
-
explainer = shap.KernelExplainer(model.predict, st.session_state.X_train_selected[:100, :])
|
1279 |
-
shap_values = explainer.shap_values(input_processed)
|
1280 |
-
|
1281 |
-
st.write("### SHAP Values")
|
1282 |
-
fig, ax = plt.subplots()
|
1283 |
-
shap.force_plot(explainer.expected_value, shap_values, input_processed,
|
1284 |
-
feature_names=feature_names, matplotlib=True, show=False)
|
1285 |
-
st.pyplot(fig)
|
1286 |
-
|
1287 |
-
except Exception as e:
|
1288 |
-
st.error(f"SHAP calculation failed: {e}")
|
1289 |
-
|
1290 |
-
except Exception as e:
|
1291 |
-
st.error(f"Prediction failed: {e}")
|
1292 |
-
|
1293 |
-
# Batch Predictions
|
1294 |
-
st.subheader("📂 Batch Predictions")
|
1295 |
-
batch_file = st.file_uploader("Upload CSV for Batch Predictions", type=["csv"])
|
1296 |
-
if batch_file is not None:
|
1297 |
-
try:
|
1298 |
-
batch_df = pd.read_csv(batch_file)
|
1299 |
-
batch_processed = preprocessor.transform(batch_df)
|
1300 |
-
batch_predictions = model.predict(batch_processed)
|
1301 |
-
batch_df['Prediction'] = batch_predictions
|
1302 |
-
|
1303 |
-
if hasattr(model, 'predict_proba'):
|
1304 |
-
probabilities = model.predict_proba(batch_processed)
|
1305 |
-
for i in range(probabilities.shape[1]):
|
1306 |
-
batch_df[f'Probability_Class_{i}'] = probabilities[:, i]
|
1307 |
-
|
1308 |
-
st.write("### Predictions Preview")
|
1309 |
-
st.dataframe(batch_df.head())
|
1310 |
-
|
1311 |
-
# Download Predictions
|
1312 |
-
csv = batch_df.to_csv(index=False)
|
1313 |
-
b64 = base64.b64encode(csv.encode()).decode()
|
1314 |
-
href = f'<a href="data:file/csv;base64,{b64}" download="predictions.csv">Download Predictions CSV</a>'
|
1315 |
-
st.markdown(href, unsafe_allow_html=True)
|
1316 |
-
|
1317 |
-
except Exception as e:
|
1318 |
-
st.error(f"Batch prediction failed: {e}")
|
1319 |
-
|
1320 |
-
# Prediction Analysis
|
1321 |
-
st.subheader("📊 Prediction Analysis")
|
1322 |
-
if st.checkbox("Analyze Predictions"):
|
1323 |
-
try:
|
1324 |
-
y_pred = model.predict(st.session_state.X_test_selected)
|
1325 |
-
y_test = st.session_state.y_test
|
1326 |
-
|
1327 |
-
if hasattr(model, 'predict'):
|
1328 |
-
fig, ax = plt.subplots()
|
1329 |
-
ax.scatter(y_test, y_pred)
|
1330 |
-
ax.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], 'k--', lw=2)
|
1331 |
-
ax.set_xlabel('Actual')
|
1332 |
-
ax.set_ylabel('Predicted')
|
1333 |
-
ax.set_title('Actual vs Predicted')
|
1334 |
-
st.pyplot(fig)
|
1335 |
-
else:
|
1336 |
-
conf_matrix = confusion_matrix(y_test, y_pred)
|
1337 |
-
fig, ax = plt.subplots()
|
1338 |
-
sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues', ax=ax)
|
1339 |
-
ax.set_xlabel('Predicted Labels')
|
1340 |
-
ax.set_ylabel('True Labels')
|
1341 |
-
ax.set_title('Confusion Matrix')
|
1342 |
-
st.pyplot(fig)
|
1343 |
-
except Exception as e:
|
1344 |
-
st.error(f"Prediction analysis failed: {e}")
|
1345 |
-
|
1346 |
-
# Prediction Export
|
1347 |
-
st.subheader("💾 Export Predictions")
|
1348 |
-
if st.button("Export Predictions as PDF"):
|
1349 |
-
try:
|
1350 |
-
from fpdf import FPDF
|
1351 |
-
pdf = FPDF()
|
1352 |
-
pdf.add_page()
|
1353 |
-
pdf.set_font("Arial", size=12)
|
1354 |
-
pdf.cell(200, 10, txt="Predictions Report", ln=True, align='C')
|
1355 |
-
pdf.cell(200, 10, txt=f"Model Type: {type(model).__name__}", ln=True)
|
1356 |
-
pdf.cell(200, 10, txt=f"Problem Type: {'Regression' if hasattr(model, 'predict') else 'Classification'}", ln=True)
|
1357 |
-
pdf.output("predictions_report.pdf")
|
1358 |
-
st.success("Predictions exported successfully!")
|
1359 |
-
except Exception as e:
|
1360 |
-
st.error(f"An unexpected error occurred: {e}")
|
|
|
1 |
+
import streamlit as st
|
|
|
2 |
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import plotly.express as px
|
5 |
+
import plotly.graph_objects as go
|
|
|
|
|
|
|
6 |
from sklearn.preprocessing import StandardScaler, LabelEncoder
|
7 |
from sklearn.model_selection import train_test_split
|
8 |
+
from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
|
9 |
+
from sklearn.metrics import accuracy_score, mean_squared_error
|
|
|
|
|
10 |
from ydata_profiling import ProfileReport
|
11 |
from streamlit_pandas_profiling import st_profile_report
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
import joblib
|
13 |
+
import shap
|
14 |
+
from datetime import datetime
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
+
# --------------------------
|
17 |
+
# Page Configuration
|
18 |
+
# --------------------------
|
19 |
st.set_page_config(
|
20 |
+
page_title="DataInsight Pro",
|
21 |
+
page_icon="🔮",
|
22 |
layout="wide",
|
|
|
23 |
initial_sidebar_state="expanded"
|
24 |
)
|
25 |
+
|
26 |
+
# --------------------------
|
27 |
+
# Custom Styling
|
28 |
+
# --------------------------
|
29 |
+
st.markdown("""
|
30 |
+
<style>
|
31 |
+
.main {background-color: #f8f9fa;}
|
32 |
+
.sidebar .sidebar-content {background-color: #2c3e50;}
|
33 |
+
.stButton>button {background-color: #3498db; color: white;}
|
34 |
+
.stTextInput>div>div>input {border: 1px solid #3498db;}
|
35 |
+
.stSelectbox>div>div>select {border: 1px solid #3498db;}
|
36 |
+
.stSlider>div>div>div>div {background-color: #3498db;}
|
37 |
+
.metric {padding: 15px; background-color: white; border-radius: 10px; box-shadow: 0 2px 5px rgba(0,0,0,0.1);}
|
38 |
+
</style>
|
39 |
+
""", unsafe_allow_html=True)
|
40 |
+
|
41 |
+
# --------------------------
|
42 |
+
# Session State Initialization
|
43 |
+
# --------------------------
|
44 |
if 'raw_data' not in st.session_state:
|
45 |
st.session_state.raw_data = None
|
46 |
if 'cleaned_data' not in st.session_state:
|
47 |
st.session_state.cleaned_data = None
|
|
|
48 |
if 'model' not in st.session_state:
|
49 |
st.session_state.model = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
+
# --------------------------
|
52 |
+
# Helper Functions
|
53 |
+
# --------------------------
|
54 |
+
def generate_quality_report(df):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
"""Generate comprehensive data quality report"""
|
56 |
report = {
|
57 |
+
'basic': {
|
58 |
'rows': df.shape[0],
|
59 |
'columns': df.shape[1],
|
60 |
+
'missing': df.isna().sum().sum(),
|
61 |
'duplicates': df.duplicated().sum()
|
62 |
},
|
63 |
+
'columns': {}
|
|
|
64 |
}
|
|
|
65 |
for col in df.columns:
|
66 |
col_report = {
|
67 |
'type': str(df[col].dtype),
|
68 |
'unique': df[col].nunique(),
|
69 |
'missing': df[col].isna().sum(),
|
|
|
70 |
}
|
|
|
|
|
71 |
if pd.api.types.is_numeric_dtype(df[col]):
|
72 |
col_report.update({
|
73 |
'mean': df[col].mean(),
|
74 |
'std': df[col].std(),
|
75 |
+
'zeros': (df[col] == 0).sum()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
})
|
77 |
+
report['columns'][col] = col_report
|
|
|
|
|
|
|
|
|
78 |
return report
|
79 |
|
80 |
+
# --------------------------
|
81 |
+
# Sidebar Navigation
|
82 |
+
# --------------------------
|
83 |
+
with st.sidebar:
|
84 |
+
st.title("🔮 DataInsight Pro")
|
85 |
+
app_mode = st.selectbox(
|
86 |
+
"Navigation",
|
87 |
+
["Data Upload", "Data Cleaning", "EDA", "Model Training", "Predictions"],
|
88 |
+
format_func=lambda x: f"📌 {x}"
|
89 |
+
)
|
90 |
+
st.markdown("---")
|
91 |
+
st.markdown("Created by [Your Name]")
|
92 |
+
st.markdown("v1.2 | © 2024")
|
93 |
+
|
94 |
+
# --------------------------
|
95 |
+
# Main App Pages
|
96 |
+
# --------------------------
|
|
|
|
|
|
|
97 |
if app_mode == "Data Upload":
|
98 |
+
st.title("📤 Data Upload & Profiling")
|
99 |
+
|
100 |
+
uploaded_file = st.file_uploader("Upload your dataset (CSV/XLSX)", type=["csv", "xlsx"])
|
101 |
+
|
|
|
|
|
|
|
|
|
102 |
if uploaded_file:
|
103 |
+
try:
|
104 |
+
if uploaded_file.name.endswith('.csv'):
|
105 |
+
df = pd.read_csv(uploaded_file)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
else:
|
107 |
+
df = pd.read_excel(uploaded_file)
|
108 |
+
|
109 |
+
st.session_state.raw_data = df
|
110 |
+
|
111 |
+
col1, col2, col3 = st.columns(3)
|
112 |
+
with col1:
|
113 |
+
st.metric("Rows", df.shape[0])
|
114 |
+
with col2:
|
115 |
+
st.metric("Columns", df.shape[1])
|
116 |
+
with col3:
|
117 |
+
st.metric("Missing Values", df.isna().sum().sum())
|
118 |
+
|
119 |
+
with st.expander("Data Preview", expanded=True):
|
120 |
+
st.dataframe(df.head(10), use_container_width=True)
|
121 |
+
|
122 |
+
if st.button("Generate Full Profile Report"):
|
123 |
+
with st.spinner("Generating comprehensive analysis..."):
|
124 |
+
pr = ProfileReport(df, explorative=True)
|
125 |
+
st_profile_report(pr)
|
126 |
+
|
127 |
+
except Exception as e:
|
128 |
+
st.error(f"Error loading file: {str(e)}")
|
129 |
|
130 |
+
elif app_mode == "Data Cleaning":
|
131 |
+
st.title("🧹 Smart Data Cleaning")
|
|
|
|
|
|
|
132 |
|
133 |
+
if st.session_state.raw_data is None:
|
134 |
+
st.warning("Please upload data first")
|
135 |
+
st.stop()
|
136 |
|
137 |
+
df = st.session_state.raw_data.copy()
|
138 |
+
|
139 |
+
# Missing Value Handling
|
140 |
+
with st.expander("🔍 Missing Values Treatment", expanded=True):
|
141 |
+
missing_cols = df.columns[df.isna().any()].tolist()
|
142 |
+
if missing_cols:
|
143 |
+
cols = st.multiselect("Select columns to handle", missing_cols)
|
144 |
+
method = st.selectbox("Imputation Method", [
|
145 |
+
"Drop Missing",
|
146 |
+
"Mean/Median",
|
147 |
+
"Custom Value"
|
148 |
+
])
|
149 |
+
|
150 |
+
if st.button("Apply Treatment"):
|
151 |
+
if method == "Drop Missing":
|
152 |
+
df = df.dropna(subset=cols)
|
153 |
+
elif method == "Mean/Median":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
for col in cols:
|
155 |
+
if pd.api.types.is_numeric_dtype(df[col]):
|
156 |
+
df[col] = df[col].fillna(df[col].median())
|
157 |
+
st.session_state.cleaned_data = df
|
158 |
+
st.success("Missing values handled successfully!")
|
159 |
+
else:
|
160 |
+
st.success("No missing values found!")
|
161 |
+
|
162 |
+
# Data Type Conversion
|
163 |
+
with st.expander("🔄 Data Type Conversion"):
|
164 |
+
col_to_convert = st.selectbox("Select column", df.columns)
|
165 |
+
new_type = st.selectbox("New data type", [
|
166 |
+
"String", "Integer", "Float",
|
167 |
+
"Boolean", "Datetime"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
])
|
169 |
+
|
170 |
+
if st.button("Convert"):
|
171 |
try:
|
172 |
if new_type == "String":
|
173 |
df[col_to_convert] = df[col_to_convert].astype(str)
|
174 |
elif new_type == "Integer":
|
175 |
df[col_to_convert] = pd.to_numeric(df[col_to_convert], errors='coerce').astype('Int64')
|
176 |
+
st.session_state.cleaned_data = df
|
177 |
+
st.success("Conversion successful!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
except Exception as e:
|
179 |
+
st.error(f"Error: {str(e)}")
|
180 |
+
|
181 |
+
if st.session_state.cleaned_data is not None:
|
182 |
+
with st.expander("✨ Cleaned Data Preview"):
|
183 |
+
st.dataframe(st.session_state.cleaned_data.head(), use_container_width=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
|
185 |
+
elif app_mode == "EDA":
|
186 |
+
st.title("🔍 Exploratory Data Analysis")
|
187 |
+
|
188 |
+
if st.session_state.cleaned_data is None:
|
189 |
+
st.warning("Please clean your data first")
|
190 |
st.stop()
|
191 |
+
|
192 |
+
df = st.session_state.cleaned_data
|
193 |
+
|
194 |
+
# Visualization Selector
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
195 |
col1, col2 = st.columns([1, 3])
|
|
|
196 |
with col1:
|
197 |
+
st.subheader("Visualization Setup")
|
198 |
+
plot_type = st.selectbox("Choose plot type", [
|
199 |
+
"Scatter Plot", "Histogram",
|
200 |
+
"Box Plot", "Correlation Matrix"
|
201 |
+
])
|
202 |
+
|
203 |
+
x_axis = st.selectbox("X-Axis", df.columns)
|
204 |
+
y_axis = st.selectbox("Y-Axis", df.columns) if plot_type in ["Scatter Plot", "Box Plot"] else None
|
205 |
+
color_by = st.selectbox("Color By", [None] + df.columns.tolist())
|
206 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
207 |
with col2:
|
208 |
+
st.subheader("Visualization")
|
209 |
+
try:
|
210 |
+
if plot_type == "Scatter Plot":
|
211 |
+
fig = px.scatter(df, x=x_axis, y=y_axis, color=color_by)
|
212 |
+
elif plot_type == "Histogram":
|
213 |
+
fig = px.histogram(df, x=x_axis, color=color_by)
|
214 |
+
elif plot_type == "Box Plot":
|
215 |
+
fig = px.box(df, x=x_axis, y=y_axis, color=color_by)
|
216 |
+
elif plot_type == "Correlation Matrix":
|
217 |
+
corr = df.select_dtypes(include=np.number).corr()
|
218 |
+
fig = px.imshow(corr, text_auto=True)
|
219 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
220 |
st.plotly_chart(fig, use_container_width=True)
|
221 |
+
except Exception as e:
|
222 |
+
st.error(f"Visualization error: {str(e)}")
|
223 |
|
224 |
+
elif app_mode == "Model Training":
|
225 |
+
st.title("🤖 Intelligent Model Training")
|
226 |
+
|
227 |
+
if st.session_state.cleaned_data is None:
|
228 |
+
st.warning("Please clean your data first")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
229 |
st.stop()
|
230 |
+
|
231 |
+
df = st.session_state.cleaned_data
|
232 |
+
|
233 |
+
# Model Setup
|
234 |
+
col1, col2 = st.columns(2)
|
235 |
+
with col1:
|
236 |
+
target = st.selectbox("Select Target Variable", df.columns)
|
237 |
+
problem_type = st.selectbox("Problem Type", ["Classification", "Regression"])
|
238 |
+
with col2:
|
239 |
+
features = st.multiselect("Select Features", df.columns.drop(target))
|
240 |
+
test_size = st.slider("Test Size", 0.1, 0.5, 0.2)
|
241 |
+
|
242 |
+
if st.button("Train Model"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
243 |
try:
|
244 |
+
X = df[features]
|
245 |
+
y = df[target]
|
246 |
+
|
247 |
+
# Preprocessing
|
248 |
+
X = pd.get_dummies(X)
|
249 |
+
y = LabelEncoder().fit_transform(y) if problem_type == "Classification" else y
|
250 |
+
|
251 |
+
X_train, X_test, y_train, y_test = train_test_split(
|
252 |
+
X, y, test_size=test_size, random_state=42
|
253 |
+
)
|
254 |
+
|
255 |
+
# Model Training
|
256 |
+
if problem_type == "Classification":
|
257 |
+
model = RandomForestClassifier()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
258 |
else:
|
259 |
+
model = RandomForestRegressor()
|
260 |
+
|
261 |
+
model.fit(X_train, y_train)
|
262 |
+
st.session_state.model = model
|
263 |
+
|
264 |
+
# Evaluation
|
265 |
+
y_pred = model.predict(X_test)
|
266 |
+
if problem_type == "Classification":
|
267 |
+
accuracy = accuracy_score(y_test, y_pred)
|
268 |
+
st.metric("Accuracy", f"{accuracy:.2%}")
|
269 |
+
else:
|
270 |
+
mse = mean_squared_error(y_test, y_pred)
|
271 |
+
st.metric("MSE", f"{mse:.2f}")
|
272 |
+
|
273 |
+
# Feature Importance
|
274 |
+
fig = px.bar(
|
275 |
+
x=model.feature_importances_,
|
276 |
+
y=X.columns,
|
277 |
+
orientation='h',
|
278 |
+
title="Feature Importance"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
279 |
)
|
280 |
+
st.plotly_chart(fig, use_container_width=True)
|
281 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
282 |
except Exception as e:
|
283 |
+
st.error(f"Training failed: {str(e)}")
|
284 |
|
|
|
285 |
elif app_mode == "Predictions":
|
286 |
+
st.title("🔮 Predictive Analytics")
|
287 |
+
|
288 |
+
if st.session_state.model is None:
|
289 |
+
st.warning("Please train a model first")
|
|
|
|
|
|
|
|
|
290 |
st.stop()
|
291 |
+
|
292 |
+
model = st.session_state.model
|
293 |
+
|
294 |
+
# Prediction Interface
|
295 |
+
col1, col2 = st.columns(2)
|
296 |
+
with col1:
|
297 |
+
st.subheader("Input Parameters")
|
298 |
+
input_data = {}
|
299 |
+
for feature in model.feature_names_in_:
|
300 |
+
input_data[feature] = st.number_input(feature)
|
301 |
+
|
302 |
+
with col2:
|
303 |
+
st.subheader("Prediction Result")
|
304 |
+
if st.button("Generate Prediction"):
|
305 |
+
try:
|
306 |
+
input_df = pd.DataFrame([input_data])
|
307 |
+
prediction = model.predict(input_df)[0]
|
308 |
+
st.metric("Predicted Value", prediction)
|
309 |
+
|
310 |
+
# SHAP Explanation
|
311 |
+
explainer = shap.TreeExplainer(model)
|
312 |
+
shap_values = explainer.shap_values(input_df)
|
313 |
+
fig = shap.force_plot(
|
314 |
+
explainer.expected_value[0],
|
315 |
+
shap_values[0],
|
316 |
+
input_df.iloc[0],
|
317 |
+
matplotlib=False
|
318 |
+
)
|
319 |
+
st.components.v1.html(shap.getjs() + fig.html(), height=300)
|
320 |
+
|
321 |
+
except Exception as e:
|
322 |
+
st.error(f"Prediction failed: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|