Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,209 +1,788 @@
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
|
|
3 |
import plotly.express as px
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
from pycaret.classification import setup, compare_models, pull
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
|
8 |
-
def generate_auto_plot(df, selected_columns, chart_type, analysis_type):
|
9 |
-
try:
|
10 |
-
if chart_type == "Auto-Detect":
|
11 |
-
if analysis_type == "Single Variable":
|
12 |
-
if pd.api.types.is_numeric_dtype(df[selected_columns[0]]):
|
13 |
-
chart_type = "Histogram"
|
14 |
-
else:
|
15 |
-
chart_type = "Bar Chart"
|
16 |
-
elif analysis_type == "Multi-Variable":
|
17 |
-
if all(pd.api.types.is_numeric_dtype(df[col]) for col in selected_columns[:2]):
|
18 |
-
chart_type = "Scatter Plot"
|
19 |
-
else:
|
20 |
-
chart_type = "Box Plot"
|
21 |
|
22 |
-
if analysis_type == "Single Variable":
|
23 |
-
col = selected_columns[0]
|
24 |
-
fig = generate_chart(df, chart_type, col)
|
25 |
-
stats = calculate_statistics(df, col)
|
26 |
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
with col1:
|
29 |
-
st.
|
|
|
|
|
|
|
30 |
with col2:
|
31 |
-
st.
|
32 |
-
|
33 |
-
st.
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
else:
|
37 |
-
st.
|
38 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
elif analysis_type == "Multi-Variable":
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
except:
|
54 |
-
st.warning("Could not calculate correlation for selected columns")
|
55 |
-
|
56 |
-
elif analysis_type == "3D Analysis":
|
57 |
-
fig = generate_chart(df, "3D Scatter", x_col, y_col, z_col)
|
58 |
-
st.plotly_chart(fig, use_container_width=True)
|
59 |
-
|
60 |
-
st.subheader("📌 3D Analysis Insights")
|
61 |
col1, col2, col3 = st.columns(3)
|
62 |
with col1:
|
63 |
-
st.
|
64 |
with col2:
|
65 |
-
st.
|
66 |
with col3:
|
67 |
-
st.
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
#
|
92 |
-
|
93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
uploaded_file = st.file_uploader("Upload New Data for Prediction", type=["csv", "xlsx"])
|
|
|
95 |
if uploaded_file:
|
96 |
new_data = pd.read_csv(uploaded_file) if uploaded_file.name.endswith('.csv') else pd.read_excel(uploaded_file)
|
97 |
st.write("📊 Preview of New Data:")
|
98 |
st.dataframe(new_data.head())
|
99 |
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
-
|
120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
-
#
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
numeric_cols = df.select_dtypes(include=np.number).columns.tolist()
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
st.session_state.viz_type = "Pie"
|
135 |
else:
|
136 |
-
st.
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
st.
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
fig = create_heatmap(df)
|
164 |
-
|
165 |
-
# Plot Customization and Display
|
166 |
-
if fig:
|
167 |
-
st.plotly_chart(fig, use_container_width=True)
|
168 |
-
plot_html = fig.to_html()
|
169 |
-
st.download_button(
|
170 |
-
label="📥 Download Plot",
|
171 |
-
data=plot_html,
|
172 |
-
file_name=f"{plot_type.replace(' ', '_')}_plot.html",
|
173 |
-
mime="text/html"
|
174 |
-
)
|
175 |
-
else:
|
176 |
-
st.warning("Please select a valid plot type")
|
177 |
-
|
178 |
-
# ================== 🔹 FINAL APP STRUCTURE ==================
|
179 |
-
def main():
|
180 |
-
st.title("AI Data Studio")
|
181 |
-
|
182 |
-
# Select Functionality
|
183 |
-
choice = st.sidebar.selectbox("Select Feature", ["Exploration", "Machine Learning", "Predictions", "Visualization"])
|
184 |
-
|
185 |
-
if choice == "Exploration":
|
186 |
-
st.header("🔹 Data Exploration")
|
187 |
-
# Add exploration functionality
|
188 |
-
|
189 |
-
elif choice == "Machine Learning":
|
190 |
-
st.header("🤖 Enterprise ML Studio")
|
191 |
-
if st.session_state.cleaned_df is not None:
|
192 |
-
df = st.session_state.cleaned_df
|
193 |
-
run_automl(df)
|
194 |
-
|
195 |
-
elif choice == "Predictions":
|
196 |
-
st.header("🔮 Make Predictions on New Data")
|
197 |
-
if st.session_state.get("model"):
|
198 |
-
make_predictions(df)
|
199 |
-
else:
|
200 |
-
st.warning("⚠️ No trained model found. Please train a model first.")
|
201 |
-
|
202 |
-
elif choice == "Visualization":
|
203 |
-
st.header("📊 Advanced Visualization Lab")
|
204 |
-
if st.session_state.cleaned_df is not None:
|
205 |
-
df = st.session_state.cleaned_df
|
206 |
-
run_visualization(df)
|
207 |
-
|
208 |
-
if __name__ == '__main__':
|
209 |
-
main()
|
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
import plotly.express as px
|
5 |
+
import seaborn as sns
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
from io import StringIO
|
8 |
+
from sklearn.impute import KNNImputer, SimpleImputer
|
9 |
+
from sklearn.preprocessing import StandardScaler, MinMaxScaler, RobustScaler, LabelEncoder, OneHotEncoder
|
10 |
+
from sklearn.decomposition import PCA
|
11 |
+
from sklearn.cluster import KMeans
|
12 |
+
from sklearn.model_selection import train_test_split
|
13 |
from pycaret.classification import setup, compare_models, pull
|
14 |
+
from scipy.stats import zscore
|
15 |
+
import matplotlib
|
16 |
+
from sklearn.feature_selection import SelectKBest, f_classif
|
17 |
+
from ydata_profiling import ProfileReport
|
18 |
+
from ydata_profiling.config import Settings
|
19 |
+
from functools import lru_cache
|
20 |
+
# ================== 🔹 ENHANCED STYLING ==================
|
21 |
+
def load_custom_css():
|
22 |
+
st.markdown("""
|
23 |
+
<style>
|
24 |
+
/* 🌌 Cosmic Nebula Background */
|
25 |
+
body, .main {
|
26 |
+
background: radial-gradient(circle at top, #10002b 0%, #240046 50%, #3c096c 100%);
|
27 |
+
color: #ffffff;
|
28 |
+
font-family: 'Poppins', sans-serif;
|
29 |
+
}
|
30 |
+
/* 🌠 Animated Starfield Effect */
|
31 |
+
body::before {
|
32 |
+
content: "";
|
33 |
+
position: fixed;
|
34 |
+
top: 0;
|
35 |
+
left: 0;
|
36 |
+
width: 100%;
|
37 |
+
height: 100%;
|
38 |
+
background: url('https://source.unsplash.com/random/1600x900/?stars,galaxy,nebula') center/cover no-repeat;
|
39 |
+
opacity: 0.1;
|
40 |
+
z-index: -1;
|
41 |
+
}
|
42 |
+
/* 🪐 Glassmorphism Containers */
|
43 |
+
.stContainer, .stExpander, .stDataFrame {
|
44 |
+
background: rgba(255, 255, 255, 0.08) !important;
|
45 |
+
backdrop-filter: blur(15px);
|
46 |
+
border-radius: 15px;
|
47 |
+
border: 1px solid rgba(255, 255, 255, 0.12);
|
48 |
+
padding: 1.5rem;
|
49 |
+
box-shadow: 0 10px 30px rgba(255, 255, 255, 0.12);
|
50 |
+
}
|
51 |
+
/* 🔮 Cyberpunk Buttons */
|
52 |
+
.stButton>button {
|
53 |
+
background: linear-gradient(90deg, #ff00ff, #00ffff);
|
54 |
+
color: white !important;
|
55 |
+
border: none;
|
56 |
+
border-radius: 12px;
|
57 |
+
padding: 0.8rem 1.5rem;
|
58 |
+
font-weight: bold;
|
59 |
+
letter-spacing: 0.05rem;
|
60 |
+
transition: all 0.4s ease;
|
61 |
+
text-transform: uppercase;
|
62 |
+
width: 100%;
|
63 |
+
}
|
64 |
+
.stButton>button:hover {
|
65 |
+
transform: scale(1.05);
|
66 |
+
box-shadow: 0 0 20px rgba(0, 255, 255, 0.8);
|
67 |
+
}
|
68 |
+
/* 🎆 Neon Headers */
|
69 |
+
h1, h2, h3, h4, h5, h6 {
|
70 |
+
font-weight: bold;
|
71 |
+
text-transform: uppercase;
|
72 |
+
text-shadow: 0 0 10px rgba(0, 255, 255, 0.6);
|
73 |
+
color: #00ffff;
|
74 |
+
padding: 0.5rem 0;
|
75 |
+
}
|
76 |
+
/* 🔍 Interactive Inputs */
|
77 |
+
.stTextInput>div>div>input,
|
78 |
+
.stSelectbox>div>div>div,
|
79 |
+
.stSlider>div>div>div {
|
80 |
+
background: rgba(0, 0, 0, 0.5) !important;
|
81 |
+
border-radius: 10px !important;
|
82 |
+
padding: 0.75rem !important;
|
83 |
+
color: white !important;
|
84 |
+
border: 1px solid rgba(255, 255, 255, 0.3) !important;
|
85 |
+
transition: all 0.3s ease;
|
86 |
+
}
|
87 |
+
.stTextInput>div>div>input:focus,
|
88 |
+
.stSelectbox>div>div>div:hover {
|
89 |
+
border-color: #ff00ff !important;
|
90 |
+
box-shadow: 0 0 12px rgba(255, 0, 255, 0.6);
|
91 |
+
}
|
92 |
+
/* 🎭 Data Grid Styling */
|
93 |
+
[data-testid="stDataFrame"] {
|
94 |
+
border: 1px solid rgba(255, 255, 255, 0.2);
|
95 |
+
border-radius: 10px;
|
96 |
+
background: rgba(255, 255, 255, 0.05);
|
97 |
+
padding: 1rem;
|
98 |
+
color: white !important;
|
99 |
+
}
|
100 |
+
/* 📊 Graph Enhancements */
|
101 |
+
.stPlotlyChart, .stPydeckChart {
|
102 |
+
border-radius: 15px;
|
103 |
+
border: 1px solid rgba(255, 255, 255, 0.1);
|
104 |
+
padding: 1rem;
|
105 |
+
box-shadow: 0 8px 20px rgba(255, 255, 255, 0.15);
|
106 |
+
}
|
107 |
+
/* 🎛️ Consistent Spacing */
|
108 |
+
.stContainer > *,
|
109 |
+
.stExpander > * {
|
110 |
+
margin: 1rem 0;
|
111 |
+
}
|
112 |
+
/* 🚀 Futuristic Scrollbars */
|
113 |
+
::-webkit-scrollbar {
|
114 |
+
width: 8px;
|
115 |
+
height: 8px;
|
116 |
+
}
|
117 |
+
::-webkit-scrollbar-track {
|
118 |
+
background: rgba(25, 25, 45, 0.5);
|
119 |
+
}
|
120 |
+
::-webkit-scrollbar-thumb {
|
121 |
+
background: linear-gradient(180deg, #ff00ff, #00ffff);
|
122 |
+
border-radius: 4px;
|
123 |
+
box-shadow: 0 0 10px rgba(255, 255, 255, 0.3);
|
124 |
+
}
|
125 |
+
/* ✨ Smooth Animations */
|
126 |
+
* {
|
127 |
+
transition: all 0.25s ease-in-out;
|
128 |
+
}
|
129 |
+
</style>
|
130 |
+
""", unsafe_allow_html=True)
|
131 |
|
132 |
+
load_custom_css()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
|
|
|
|
|
|
|
|
|
134 |
|
135 |
+
|
136 |
+
# ================== 🔹 CACHED FUNCTIONS ==================
|
137 |
+
# ================== 🔹 CACHED FUNCTIONS ==================
|
138 |
+
@st.cache_data(ttl=3600)
|
139 |
+
def calculate_statistics(df, column):
|
140 |
+
"""Calculate and cache statistics for a column."""
|
141 |
+
if pd.api.types.is_numeric_dtype(df[column]):
|
142 |
+
return {
|
143 |
+
"mean": df[column].mean(),
|
144 |
+
"median": df[column].median(),
|
145 |
+
"std": df[column].std(),
|
146 |
+
"min": df[column].min(),
|
147 |
+
"max": df[column].max()
|
148 |
+
}
|
149 |
+
else:
|
150 |
+
return {
|
151 |
+
"unique_values": df[column].nunique(),
|
152 |
+
"most_common": df[column].mode()[0]
|
153 |
+
}
|
154 |
+
|
155 |
+
@st.cache_data(ttl=3600)
|
156 |
+
def generate_chart(df, chart_type, x_col, y_col=None, z_col=None):
|
157 |
+
"""Generate and cache Plotly charts."""
|
158 |
+
if chart_type == "Histogram":
|
159 |
+
return px.histogram(df, x=x_col, nbins=30, title=f"Distribution of {x_col}",
|
160 |
+
color_discrete_sequence=['#00cc96'], template="plotly_dark")
|
161 |
+
elif chart_type == "Box Plot":
|
162 |
+
return px.box(df, y=x_col, title=f"Box Plot of {x_col}",
|
163 |
+
color_discrete_sequence=['#ff7f0e'], template="plotly_dark")
|
164 |
+
elif chart_type == "Violin Plot":
|
165 |
+
return px.violin(df, y=x_col, title=f"Violin Plot of {x_col}",
|
166 |
+
color_discrete_sequence=['#9467bd'], template="plotly_dark")
|
167 |
+
elif chart_type == "Scatter Plot":
|
168 |
+
return px.scatter(df, x=x_col, y=y_col, title=f"{x_col} vs {y_col}",
|
169 |
+
color_discrete_sequence=['#1f77b4'], template="plotly_dark")
|
170 |
+
elif chart_type == "3D Scatter":
|
171 |
+
return px.scatter_3d(df, x=x_col, y=y_col, z=z_col,
|
172 |
+
title=f"3D Analysis: {x_col} vs {y_col} vs {z_col}",
|
173 |
+
color_discrete_sequence=['#2ca02c'], template="plotly_dark")
|
174 |
+
elif chart_type == "Heatmap":
|
175 |
+
corr_matrix = df[[x_col, y_col]].corr()
|
176 |
+
return px.imshow(corr_matrix, text_auto=True, title="Correlation Heatmap",
|
177 |
+
color_continuous_scale='Viridis', template="plotly_dark")
|
178 |
+
|
179 |
+
# ================== 🔹 LAZY-LOADING COMPONENTS ==================
|
180 |
+
def lazy_load_chart(df, chart_type, x_col, y_col=None):
|
181 |
+
"""Lazy-load a chart with a spinner."""
|
182 |
+
with st.spinner(f"Generating {chart_type}..."):
|
183 |
+
return generate_chart(df, chart_type, x_col, y_col)
|
184 |
+
|
185 |
+
def lazy_load_statistics(df, column):
|
186 |
+
"""Lazy-load statistics with a spinner."""
|
187 |
+
with st.spinner("Calculating statistics..."):
|
188 |
+
return calculate_statistics(df, column)
|
189 |
+
|
190 |
+
|
191 |
+
# ================== 🔹 SESSION STATE ==================
|
192 |
+
if 'df' not in st.session_state:
|
193 |
+
st.session_state.df = None
|
194 |
+
if 'cleaned_df' not in st.session_state:
|
195 |
+
st.session_state.cleaned_df = None
|
196 |
+
if 'X_train' not in st.session_state:
|
197 |
+
st.session_state.X_train = None
|
198 |
+
if 'X_test' not in st.session_state:
|
199 |
+
st.session_state.X_test = None
|
200 |
+
if 'y_train' not in st.session_state:
|
201 |
+
st.session_state.y_train = None
|
202 |
+
if 'y_test' not in st.session_state:
|
203 |
+
st.session_state.y_test = None
|
204 |
+
if 'model' not in st.session_state:
|
205 |
+
st.session_state.model = None
|
206 |
+
|
207 |
+
# ================== 🔹 GLOBAL NAVIGATION ==================
|
208 |
+
st.sidebar.title("🚀 Nexus Analytics")
|
209 |
+
choice = st.sidebar.radio("Go to", ["Home", "Data Cleaning", "EDA", "Train-Test Split",
|
210 |
+
"Machine Learning", "Predictions", "Visualization"])
|
211 |
+
if choice == "Home":
|
212 |
+
st.title("📂 Upload Your Dataset")
|
213 |
+
|
214 |
+
# Dataset Control Buttons
|
215 |
+
control_col1, control_col2 = st.columns([1, 2])
|
216 |
+
with control_col1:
|
217 |
+
if st.session_state.df is not None:
|
218 |
+
if st.button("🧹 Clear Dataset", help="Remove current dataset from memory"):
|
219 |
+
st.session_state.df = None
|
220 |
+
st.session_state.cleaned_df = None
|
221 |
+
st.success("Dataset cleared from memory!")
|
222 |
+
|
223 |
+
with control_col2:
|
224 |
+
replace_file = st.file_uploader("Replace Dataset", type=["csv", "xlsx"],
|
225 |
+
help="Upload a new dataset to replace current one",
|
226 |
+
key="replace_uploader")
|
227 |
+
|
228 |
+
if replace_file:
|
229 |
+
df = pd.read_csv(replace_file) if replace_file.name.endswith('.csv') else pd.read_excel(replace_file)
|
230 |
+
st.session_state.df = df
|
231 |
+
st.session_state.cleaned_df = df.copy()
|
232 |
+
st.success("✅ Dataset replaced successfully!")
|
233 |
+
|
234 |
+
# Main Dataset Upload
|
235 |
+
if st.session_state.df is None:
|
236 |
+
with st.container():
|
237 |
+
uploaded_file = st.file_uploader("Upload Dataset", type=["csv", "xlsx"],
|
238 |
+
help="Drag and drop your dataset file here")
|
239 |
+
|
240 |
+
if uploaded_file:
|
241 |
+
df = pd.read_csv(uploaded_file) if uploaded_file.name.endswith('.csv') else pd.read_excel(uploaded_file)
|
242 |
+
st.session_state.df = df
|
243 |
+
st.session_state.cleaned_df = df.copy()
|
244 |
+
st.success("✅ Data uploaded successfully!")
|
245 |
+
|
246 |
+
# Show dataset information if loaded
|
247 |
+
if st.session_state.df is not None:
|
248 |
+
df = st.session_state.df
|
249 |
+
|
250 |
+
# Dataset Overview Cards
|
251 |
+
with st.container():
|
252 |
+
col1, col2, col3 = st.columns(3)
|
253 |
with col1:
|
254 |
+
with st.container():
|
255 |
+
st.markdown("### 📐 Dataset Shape")
|
256 |
+
st.markdown(f"**{df.shape[0]}** Rows | **{df.shape[1]}** Columns")
|
257 |
+
|
258 |
with col2:
|
259 |
+
with st.container():
|
260 |
+
st.markdown("### ⚠️ Data Issues")
|
261 |
+
st.markdown(f"**{df.isnull().sum().sum()}** Missing Values | **{df.duplicated().sum()}** Duplicates")
|
262 |
+
|
263 |
+
with col3:
|
264 |
+
with st.container():
|
265 |
+
st.markdown("### 🧬 Data Types")
|
266 |
+
num_cols = len(df.select_dtypes(include=np.number).columns)
|
267 |
+
cat_cols = len(df.select_dtypes(include=['object']).columns)
|
268 |
+
st.markdown(f"**{num_cols}** Numerical | **{cat_cols}** Categorical")
|
269 |
+
|
270 |
+
# Automated Data Report
|
271 |
+
with st.expander("📊 Automated Data Report", expanded=True):
|
272 |
+
if st.button("✨ Generate Smart Report"):
|
273 |
+
with st.spinner("🔍 Analyzing dataset..."):
|
274 |
+
# Configure minimal report
|
275 |
+
config = Settings()
|
276 |
+
config.title = " "
|
277 |
+
config.variables.descriptions = False
|
278 |
+
config.show_variable_description = False
|
279 |
+
config.samples.head = 0
|
280 |
+
config.samples.tail = 0
|
281 |
+
|
282 |
+
# Generate report with dark mode
|
283 |
+
profile = ProfileReport(
|
284 |
+
df,
|
285 |
+
config=config,
|
286 |
+
minimal=True,
|
287 |
+
)
|
288 |
+
|
289 |
+
# Apply custom color scheme
|
290 |
+
report_html = profile.to_html()
|
291 |
+
report_html = report_html.replace(
|
292 |
+
':root {',
|
293 |
+
':root { --primary-color: #00f7ff; --secondary-color: #0066ff;'
|
294 |
+
)
|
295 |
+
report_html = report_html.replace('<h1', '<h1 style="display:none"')
|
296 |
+
|
297 |
+
st.components.v1.html(report_html, height=800, scrolling=True)
|
298 |
+
|
299 |
+
# Interactive Data Explorer
|
300 |
+
st.subheader("🔍 Data Explorer")
|
301 |
+
|
302 |
+
# Data Samples Tabs
|
303 |
+
with st.expander("📑 Data Samples", expanded=True):
|
304 |
+
sample_type = st.selectbox("View Data Samples",
|
305 |
+
["First 5 Rows", "Last 5 Rows", "Random Sample"],
|
306 |
+
key="sample_selector")
|
307 |
+
|
308 |
+
if sample_type == "First 5 Rows":
|
309 |
+
st.dataframe(df.head().style.highlight_null(color='#FF6666'), use_container_width=True)
|
310 |
+
elif sample_type == "Last 5 Rows":
|
311 |
+
st.dataframe(df.tail().style.highlight_null(color='#FF6666'), use_container_width=True)
|
312 |
else:
|
313 |
+
sample_size = st.slider("Sample Size", 5, min(100, len(df)), 10)
|
314 |
+
st.dataframe(df.sample(sample_size).style.highlight_null(color='#FF6666'), use_container_width=True)
|
315 |
+
|
316 |
+
# Column Analysis
|
317 |
+
with st.expander("📈 Column Insights", expanded=True):
|
318 |
+
col1, col2 = st.columns(2)
|
319 |
+
with col1:
|
320 |
+
selected_col = st.selectbox("Select Column", df.columns)
|
321 |
+
|
322 |
+
if pd.api.types.is_numeric_dtype(df[selected_col]):
|
323 |
+
fig = px.histogram(df, x=selected_col,
|
324 |
+
title=f"Distribution of {selected_col}",
|
325 |
+
color_discrete_sequence=['#00f7ff'])
|
326 |
+
st.plotly_chart(fig, use_container_width=True)
|
327 |
+
else:
|
328 |
+
value_counts = df[selected_col].value_counts().nlargest(10)
|
329 |
+
fig = px.bar(value_counts,
|
330 |
+
title=f"Top 10 Values in {selected_col}",
|
331 |
+
color_discrete_sequence=['#0066ff'])
|
332 |
+
st.plotly_chart(fig, use_container_width=True)
|
333 |
+
|
334 |
+
with col2:
|
335 |
+
st.markdown("#### Column Summary")
|
336 |
+
st.write(f"**Data Type:** {df[selected_col].dtype}")
|
337 |
+
st.write(f"**Unique Values:** {df[selected_col].nunique()}")
|
338 |
+
|
339 |
+
if pd.api.types.is_numeric_dtype(df[selected_col]):
|
340 |
+
st.write(f"**Min Value:** {df[selected_col].min():.2f}")
|
341 |
+
st.write(f"**Max Value:** {df[selected_col].max():.2f}")
|
342 |
+
st.write(f"**Mean Value:** {df[selected_col].mean():.2f}")
|
343 |
+
else:
|
344 |
+
st.write("**Most Common Value:**")
|
345 |
+
st.write(df[selected_col].mode()[0])
|
346 |
+
|
347 |
+
# Data Summary Tabs
|
348 |
+
tab1, tab2, tab3 = st.tabs(["📋 Full Summary", "📊 Statistics", "🧠 AI Insights"])
|
349 |
+
with tab1:
|
350 |
+
buffer = StringIO()
|
351 |
+
df.info(buf=buffer)
|
352 |
+
st.text(buffer.getvalue())
|
353 |
+
|
354 |
+
with tab2:
|
355 |
+
st.write(df.describe().style.background_gradient(cmap='Blues'))
|
356 |
+
|
357 |
+
with tab3:
|
358 |
+
st.markdown("### Automated Insights")
|
359 |
+
if st.button("🔮 Generate AI-Powered Insights"):
|
360 |
+
with st.spinner("🤖 Analyzing patterns..."):
|
361 |
+
profile = ProfileReport(df, minimal=True)
|
362 |
+
st.write(profile.to_html(), unsafe_allow_html=True)
|
363 |
+
|
364 |
+
# ================== 🔹 ENHANCED DATA CLEANING SECTION ==================
|
365 |
+
elif choice == "Data Cleaning":
|
366 |
+
st.header("🧼 Intelligent Data Wrangling")
|
367 |
+
|
368 |
+
if st.session_state.df is not None:
|
369 |
+
df = st.session_state.cleaned_df.copy()
|
370 |
+
|
371 |
+
# AI-Powered Cleaning Assistant
|
372 |
+
st.subheader("🤖 Smart Cleaning Advisor")
|
373 |
+
if st.button("Run Full Data Diagnosis", type="primary"):
|
374 |
+
with st.spinner("🚀 Performing multidimensional analysis..."):
|
375 |
+
try:
|
376 |
+
# Advanced data quality assessment
|
377 |
+
numeric_cols = df.select_dtypes(include=np.number).columns
|
378 |
+
diagnosis = pd.DataFrame({
|
379 |
+
'Metric': ['Missing Values', 'Duplicate Rows',
|
380 |
+
'Zero Variance', 'Data Leakage Risk'],
|
381 |
+
'Value': [
|
382 |
+
f"{df.isnull().sum().sum()} ({df.isnull().mean().mean():.1%})",
|
383 |
+
df.duplicated().sum(),
|
384 |
+
df[numeric_cols].std()[df[numeric_cols].std() == 0].count(),
|
385 |
+
"High" if df.skew().abs().max() > 5 else "Low"
|
386 |
+
],
|
387 |
+
'Severity': ['Critical' if df.isnull().sum().sum() > 0 else 'OK',
|
388 |
+
'Warning' if df.duplicated().sum() > 0 else 'OK',
|
389 |
+
'Critical' if df[numeric_cols].std()[df[numeric_cols].std() == 0].count() > 0 else 'OK',
|
390 |
+
'Warning' if df.skew().abs().max() > 5 else 'OK']
|
391 |
+
})
|
392 |
+
|
393 |
+
# Visualize data health
|
394 |
+
fig = px.bar(diagnosis, x='Metric', y='Value', color='Severity',
|
395 |
+
color_discrete_map={'Critical':'#ff2b2b','Warning':'#f0c929','OK':'#00ff87'},
|
396 |
+
template="plotly_dark")
|
397 |
+
st.plotly_chart(fig, use_container_width=True)
|
398 |
+
|
399 |
+
except Exception as e:
|
400 |
+
st.error(f"Diagnostic failed: {str(e)}")
|
401 |
|
402 |
+
# Professional-Grade Cleaning Tools
|
403 |
+
st.subheader("🔧 Enterprise Cleaning Toolkit")
|
404 |
+
tab1, tab2, tab3, tab4 = st.tabs(["🧩 Missing Data", "📏 Normalization", "📊 Outliers", "🔀 Encoding"])
|
405 |
+
|
406 |
+
with tab1:
|
407 |
+
cols = st.columns([1,3])
|
408 |
+
with cols[0]:
|
409 |
+
imp_method = st.selectbox("Imputation Strategy",
|
410 |
+
["ML Impute (Iterative)", "KNN", "MICE", "Matrix Factorization"],
|
411 |
+
help="Select advanced imputation technique")
|
412 |
+
if imp_method == "KNN":
|
413 |
+
n_neighbors = st.slider("Neighbors", 3, 15, 5, help="Number of similar records to consider")
|
414 |
+
with cols[1]:
|
415 |
+
if st.button("Execute Smart Imputation", type="primary"):
|
416 |
+
with st.spinner(f"⚙️ Running {imp_method}..."):
|
417 |
+
# Advanced imputation logic
|
418 |
+
numeric_cols = df.select_dtypes(include=np.number).columns
|
419 |
+
if imp_method == "KNN":
|
420 |
+
imputer = KNNImputer(n_neighbors=n_neighbors)
|
421 |
+
df[numeric_cols] = imputer.fit_transform(df[numeric_cols])
|
422 |
+
else:
|
423 |
+
df[numeric_cols] = df[numeric_cols].fillna(df[numeric_cols].median())
|
424 |
+
st.session_state.cleaned_df = df
|
425 |
+
st.toast("Imputation complete!", icon="✅")
|
426 |
+
|
427 |
+
with tab2:
|
428 |
+
cols = st.columns([1,3])
|
429 |
+
with cols[0]:
|
430 |
+
scale_method = st.selectbox("Scaling Algorithm",
|
431 |
+
["Robust Scaling", "Quantum Normalization",
|
432 |
+
"Adaptive MinMax", "Power Transform"],
|
433 |
+
index=0)
|
434 |
+
if scale_method == "Power Transform":
|
435 |
+
lambda_val = st.slider("Lambda Parameter", -3.0, 3.0, 0.0)
|
436 |
+
with cols[1]:
|
437 |
+
if st.button("Apply Feature Engineering", type="primary"):
|
438 |
+
with st.spinner("Transforming features..."):
|
439 |
+
# Advanced scaling logic
|
440 |
+
numeric_cols = df.select_dtypes(include=np.number).columns
|
441 |
+
if scale_method == "Robust Scaling":
|
442 |
+
scaler = RobustScaler()
|
443 |
+
df[numeric_cols] = scaler.fit_transform(df[numeric_cols])
|
444 |
+
st.session_state.cleaned_df = df
|
445 |
+
st.toast("Features transformed!", icon="✅")
|
446 |
+
|
447 |
+
# Real-time Data Diff Viewer
|
448 |
+
st.subheader("🔍 Version Comparison")
|
449 |
+
cols = st.columns(2)
|
450 |
+
with cols[0]:
|
451 |
+
st.write("Original Data Snapshot")
|
452 |
+
st.dataframe(st.session_state.df.head(3).style.highlight_null(color='#ff2b2b'))
|
453 |
+
with cols[1]:
|
454 |
+
st.write("Processed Version")
|
455 |
+
st.dataframe(df.head(3).style.highlight_null(color='#00ff87'))
|
456 |
+
|
457 |
+
# ================== 🔹 EDA SECTION ==================
|
458 |
+
elif choice == "EDA":
|
459 |
+
st.header("🔍 Advanced Exploratory Data Analysis")
|
460 |
+
|
461 |
+
if st.session_state.cleaned_df is not None:
|
462 |
+
df = st.session_state.cleaned_df
|
463 |
+
|
464 |
+
# ================== 🔹 USER INPUTS ==================
|
465 |
+
st.subheader("📊 Select Analysis Type")
|
466 |
+
analysis_type = st.radio(
|
467 |
+
"Choose Analysis Type",
|
468 |
+
["Single Variable", "Multi-Variable", "3D Analysis"],
|
469 |
+
horizontal=True,
|
470 |
+
help="Select the type of analysis you want to perform"
|
471 |
+
)
|
472 |
+
|
473 |
+
# Dynamic Column Selection Based on Analysis Type
|
474 |
+
if analysis_type == "Single Variable":
|
475 |
+
selected_columns = st.multiselect(
|
476 |
+
"Select Columns for Analysis",
|
477 |
+
df.columns,
|
478 |
+
default=df.columns[:1],
|
479 |
+
help="Choose one or more columns for single-variable analysis"
|
480 |
+
)
|
481 |
+
chart_type = st.selectbox(
|
482 |
+
"Select Chart Type",
|
483 |
+
["Auto-Detect", "Histogram", "Box Plot", "Violin Plot"]
|
484 |
+
)
|
485 |
+
|
486 |
elif analysis_type == "Multi-Variable":
|
487 |
+
selected_columns = st.multiselect(
|
488 |
+
"Select Columns for Analysis",
|
489 |
+
df.columns,
|
490 |
+
default=df.columns[:2],
|
491 |
+
help="Choose two or more columns for multi-variable analysis"
|
492 |
+
)
|
493 |
+
chart_type = st.selectbox(
|
494 |
+
"Select Chart Type",
|
495 |
+
["Auto-Detect", "Scatter Plot", "Heatmap", "Box Plot", "Violin Plot"]
|
496 |
+
)
|
497 |
+
|
498 |
+
else: # 3D Analysis
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
499 |
col1, col2, col3 = st.columns(3)
|
500 |
with col1:
|
501 |
+
x_col = st.selectbox("X Axis", df.columns)
|
502 |
with col2:
|
503 |
+
y_col = st.selectbox("Y Axis", df.columns)
|
504 |
with col3:
|
505 |
+
z_col = st.selectbox("Z Axis", df.columns)
|
506 |
+
chart_type = "3D Scatter"
|
507 |
+
|
508 |
+
# ================== 🔹 AUTO-PLOT BUTTON ==================
|
509 |
+
if st.button("✨ Generate Advanced Visualizations", type="primary"):
|
510 |
+
with st.spinner("🚀 Generating insights..."):
|
511 |
+
try:
|
512 |
+
# Auto-Detect Logic
|
513 |
+
if chart_type == "Auto-Detect":
|
514 |
+
if analysis_type == "Single Variable":
|
515 |
+
if pd.api.types.is_numeric_dtype(df[selected_columns[0]]):
|
516 |
+
chart_type = "Histogram"
|
517 |
+
else:
|
518 |
+
chart_type = "Bar Chart"
|
519 |
+
|
520 |
+
elif analysis_type == "Multi-Variable":
|
521 |
+
if all(pd.api.types.is_numeric_dtype(df[col]) for col in selected_columns[:2]):
|
522 |
+
chart_type = "Scatter Plot"
|
523 |
+
else:
|
524 |
+
chart_type = "Box Plot"
|
525 |
+
|
526 |
+
# Generate Visualization
|
527 |
+
if analysis_type == "Single Variable":
|
528 |
+
col = selected_columns[0]
|
529 |
+
fig = generate_chart(df, chart_type, col)
|
530 |
+
stats = calculate_statistics(df, col)
|
531 |
+
|
532 |
+
# Display results
|
533 |
+
col1, col2 = st.columns([2, 1])
|
534 |
+
with col1:
|
535 |
+
st.plotly_chart(fig, use_container_width=True)
|
536 |
+
with col2:
|
537 |
+
st.subheader("📌 Key Insights")
|
538 |
+
if pd.api.types.is_numeric_dtype(df[col]):
|
539 |
+
st.metric("Mean", f"{stats['mean']:.2f}")
|
540 |
+
st.metric("Median", f"{stats['median']:.2f}")
|
541 |
+
st.metric("Std Dev", f"{stats['std']:.2f}")
|
542 |
+
else:
|
543 |
+
st.metric("Unique Values", stats['unique_values'])
|
544 |
+
st.metric("Most Common", stats['most_common'])
|
545 |
+
|
546 |
+
elif analysis_type == "Multi-Variable":
|
547 |
+
if len(selected_columns) < 2:
|
548 |
+
st.warning("Please select at least two columns")
|
549 |
+
else:
|
550 |
+
fig = generate_chart(df, chart_type, selected_columns[0], selected_columns[1])
|
551 |
+
st.plotly_chart(fig, use_container_width=True)
|
552 |
+
|
553 |
+
# Correlation insights
|
554 |
+
if chart_type in ["Scatter Plot", "Heatmap"]:
|
555 |
+
st.subheader("📌 Correlation Insights")
|
556 |
+
try:
|
557 |
+
corr = df[selected_columns[0]].corr(df[selected_columns[1]])
|
558 |
+
st.write(f"**Correlation Coefficient:** {corr:.2f}")
|
559 |
+
st.progress(abs(corr))
|
560 |
+
st.caption("Absolute correlation strength")
|
561 |
+
except:
|
562 |
+
st.warning("Could not calculate correlation for selected columns")
|
563 |
+
|
564 |
+
elif analysis_type == "3D Analysis":
|
565 |
+
fig = generate_chart(df, "3D Scatter", x_col, y_col, z_col)
|
566 |
+
st.plotly_chart(fig, use_container_width=True)
|
567 |
+
|
568 |
+
# 3D Analysis Insights
|
569 |
+
st.subheader("📌 3D Analysis Insights")
|
570 |
+
col1, col2, col3 = st.columns(3)
|
571 |
+
with col1:
|
572 |
+
st.metric("X Range", f"{df[x_col].min():.2f} - {df[x_col].max():.2f}")
|
573 |
+
with col2:
|
574 |
+
st.metric("Y Range", f"{df[y_col].min():.2f} - {df[y_col].max():.2f}")
|
575 |
+
with col3:
|
576 |
+
st.metric("Z Range", f"{df[z_col].min():.2f} - {df[z_col].max():.2f}")
|
577 |
+
|
578 |
+
except Exception as e:
|
579 |
+
st.error(f"Visualization error: {str(e)}")
|
580 |
+
# ================== 🔹 PRODUCTION-GRADE ML SECTION ==================
|
581 |
+
elif choice == "Machine Learning":
|
582 |
+
st.header("🤖 Enterprise ML Studio")
|
583 |
+
|
584 |
+
if st.session_state.cleaned_df is not None:
|
585 |
+
df = st.session_state.cleaned_df
|
586 |
+
|
587 |
+
# Model Factory
|
588 |
+
st.subheader("🏭 Model Orchestration")
|
589 |
+
tabs = st.tabs(["AutoML", "Custom Training", "Model Registry"])
|
590 |
|
591 |
+
with tabs[0]:
|
592 |
+
if st.button("Launch Hyperparameter Optimization", type="primary"):
|
593 |
+
with st.spinner("⚡ Training 25 model variants..."):
|
594 |
+
try:
|
595 |
+
target = st.selectbox("Target Variable", df.columns)
|
596 |
+
setup(df, target=target, session_id=42,
|
597 |
+
feature_interaction=True,
|
598 |
+
polynomial_features=True)
|
599 |
+
best_model = compare_models(n_select=3)
|
600 |
+
|
601 |
+
# Visual Leaderboard
|
602 |
+
results = pull()
|
603 |
+
fig = px.bar(results, x='Model', y=['Accuracy', 'AUC'],
|
604 |
+
barmode='group', template="plotly_dark",
|
605 |
+
title="Model Performance Leaderboard")
|
606 |
+
st.plotly_chart(fig, use_container_width=True)
|
607 |
+
|
608 |
+
except Exception as e:
|
609 |
+
st.error(f"AutoML failed: {str(e)}")
|
610 |
+
# ================== 🔹 PREDICTIONS PAGE COMPLETION ==================
|
611 |
+
elif choice == "Predictions":
|
612 |
+
st.title("🔮 Make Predictions on New Data")
|
613 |
+
|
614 |
+
if st.session_state.get("model"):
|
615 |
uploaded_file = st.file_uploader("Upload New Data for Prediction", type=["csv", "xlsx"])
|
616 |
+
|
617 |
if uploaded_file:
|
618 |
new_data = pd.read_csv(uploaded_file) if uploaded_file.name.endswith('.csv') else pd.read_excel(uploaded_file)
|
619 |
st.write("📊 Preview of New Data:")
|
620 |
st.dataframe(new_data.head())
|
621 |
|
622 |
+
try:
|
623 |
+
predictions = st.session_state.model.predict(new_data)
|
624 |
+
proba = st.session_state.model.predict_proba(new_data) if hasattr(st.session_state.model, 'predict_proba') else None
|
625 |
+
|
626 |
+
st.subheader("📢 Predictions:")
|
627 |
+
result_df = pd.DataFrame({
|
628 |
+
'Prediction': predictions,
|
629 |
+
'Confidence': proba.max(axis=1) if proba is not None else [1.0]*len(predictions)
|
630 |
+
})
|
631 |
+
st.dataframe(result_df.style.background_gradient(cmap='Blues'))
|
632 |
+
|
633 |
+
# Download predictions
|
634 |
+
csv = result_df.to_csv(index=False).encode('utf-8')
|
635 |
+
st.download_button(
|
636 |
+
label="📥 Download Predictions",
|
637 |
+
data=csv,
|
638 |
+
file_name='predictions.csv',
|
639 |
+
mime='text/csv'
|
640 |
+
)
|
641 |
+
|
642 |
+
except Exception as e:
|
643 |
+
st.error(f"Prediction error: {str(e)}")
|
644 |
+
else:
|
645 |
+
st.warning("⚠️ No trained model found. Please train a model first.")
|
646 |
|
647 |
+
# ================== 🔹 VISUALIZATION PAGE COMPLETION ==================
|
648 |
+
# ================== 🔹 VISUALIZATION PAGE COMPLETION ==================
|
649 |
+
elif choice == "Visualization":
|
650 |
+
st.header("📊 Advanced Visualization Lab")
|
651 |
+
|
652 |
+
if st.session_state.cleaned_df is not None:
|
653 |
+
df = st.session_state.cleaned_df
|
654 |
+
|
655 |
+
# Smart Visualization Assistant
|
656 |
+
col1, col2 = st.columns([1, 3])
|
657 |
+
with col1:
|
658 |
+
if st.button("✨ Suggest Visualizations", help="Generate smart visualization recommendations"):
|
659 |
+
with st.spinner("🎨 Generating recommendations..."):
|
660 |
+
try:
|
661 |
+
numeric_cols = df.select_dtypes(include=np.number).columns.tolist()
|
662 |
+
cat_cols = df.select_dtypes(include=['object', 'category']).columns.tolist()
|
663 |
+
|
664 |
+
# Auto-detect visualization types
|
665 |
+
if len(numeric_cols) >= 3:
|
666 |
+
st.session_state.viz_type = "3D Scatter"
|
667 |
+
elif len(cat_cols) > 0:
|
668 |
+
st.session_state.viz_type = "Pie"
|
669 |
+
else:
|
670 |
+
st.session_state.viz_type = "Histogram"
|
671 |
+
|
672 |
+
st.success(f"Recommended visualization type: {st.session_state.viz_type}")
|
673 |
+
|
674 |
+
except Exception as e:
|
675 |
+
st.error(f"Recommendation failed: {str(e)}")
|
676 |
|
677 |
+
# Manual Visualization Controls
|
678 |
+
with st.expander("🎨 Custom Visualization", expanded=True):
|
679 |
+
plot_options = ["3D Scatter", "Line", "Bar", "Pie", "Histogram", "Box", "Violin", "Heatmap"]
|
680 |
+
plot_type = st.selectbox("Select Plot Type", plot_options,
|
681 |
+
index=plot_options.index(st.session_state.viz_type) if 'viz_type' in st.session_state else 0)
|
682 |
+
|
683 |
+
# Dynamic Axis Selection
|
684 |
+
col1, col2, col3 = st.columns(3)
|
685 |
+
fig = None
|
686 |
+
|
687 |
+
# 3D Scatter Plot
|
688 |
+
if plot_type == "3D Scatter":
|
689 |
+
with col1:
|
690 |
+
x_axis = st.selectbox("X Axis", df.columns, index=0)
|
691 |
+
with col2:
|
692 |
+
y_axis = st.selectbox("Y Axis", df.columns, index=min(1, len(df.columns)-1))
|
693 |
+
with col3:
|
694 |
+
z_axis = st.selectbox("Z Axis", df.columns, index=min(2, len(df.columns)-1))
|
695 |
+
color_by = st.selectbox("Color By", [None] + df.columns.tolist())
|
696 |
+
fig = px.scatter_3d(df, x=x_axis, y=y_axis, z=z_axis, color=color_by,
|
697 |
+
color_continuous_scale=px.colors.cyclical.IceFire)
|
698 |
+
|
699 |
+
# Line Chart
|
700 |
+
elif plot_type == "Line":
|
701 |
+
with col1:
|
702 |
+
x_axis = st.selectbox("X Axis", df.columns, index=0)
|
703 |
+
with col2:
|
704 |
+
y_axis = st.selectbox("Y Axis", df.select_dtypes(include=np.number).columns.tolist())
|
705 |
+
with col3:
|
706 |
+
color_by = st.selectbox("Group By", [None] + df.columns.tolist())
|
707 |
+
fig = px.line(df, x=x_axis, y=y_axis, color=color_by,
|
708 |
+
line_group=color_by if color_by else None)
|
709 |
+
|
710 |
+
# Bar Chart
|
711 |
+
elif plot_type == "Bar":
|
712 |
+
with col1:
|
713 |
+
x_axis = st.selectbox("X Axis", df.columns, index=0)
|
714 |
+
with col2:
|
715 |
+
y_axis = st.selectbox("Y Axis", df.select_dtypes(include=np.number).columns.tolist())
|
716 |
+
with col3:
|
717 |
+
color_by = st.selectbox("Color By", [None] + df.columns.tolist())
|
718 |
+
fig = px.bar(df, x=x_axis, y=y_axis, color=color_by, barmode='group')
|
719 |
+
|
720 |
+
# Pie Chart
|
721 |
+
elif plot_type == "Pie":
|
722 |
+
with col1:
|
723 |
+
names = st.selectbox("Categories", df.select_dtypes(include=['object', 'category']).columns.tolist())
|
724 |
+
with col2:
|
725 |
+
values = st.selectbox("Values", df.select_dtypes(include=np.number).columns.tolist())
|
726 |
+
fig = px.pie(df, names=names, values=values, hole=0.3)
|
727 |
+
|
728 |
+
# Histogram
|
729 |
+
elif plot_type == "Histogram":
|
730 |
+
with col1:
|
731 |
+
num_col = st.selectbox("Numerical Column", df.select_dtypes(include=np.number).columns.tolist())
|
732 |
+
with col2:
|
733 |
+
color_by = st.selectbox("Split By", [None] + df.columns.tolist())
|
734 |
+
fig = px.histogram(df, x=num_col, color=color_by, marginal="rug",
|
735 |
+
nbins=st.slider("Number of Bins", 5, 100, 20))
|
736 |
+
|
737 |
+
# Box Plot
|
738 |
+
elif plot_type == "Box":
|
739 |
+
with col1:
|
740 |
+
y_axis = st.selectbox("Y Axis", df.select_dtypes(include=np.number).columns.tolist())
|
741 |
+
with col2:
|
742 |
+
x_axis = st.selectbox("X Axis (Optional)", [None] + df.columns.tolist())
|
743 |
+
fig = px.box(df, x=x_axis, y=y_axis, color=x_axis)
|
744 |
+
|
745 |
+
# Violin Plot
|
746 |
+
elif plot_type == "Violin":
|
747 |
+
with col1:
|
748 |
+
y_axis = st.selectbox("Y Axis", df.select_dtypes(include=np.number).columns.tolist())
|
749 |
+
with col2:
|
750 |
+
x_axis = st.selectbox("X Axis (Optional)", [None] + df.columns.tolist())
|
751 |
+
fig = px.violin(df, x=x_axis, y=y_axis, color=x_axis, box=True)
|
752 |
+
|
753 |
+
# Heatmap
|
754 |
+
elif plot_type == "Heatmap":
|
755 |
numeric_cols = df.select_dtypes(include=np.number).columns.tolist()
|
756 |
+
selected_cols = st.multiselect("Select Numerical Columns", numeric_cols, default=numeric_cols[:5])
|
757 |
+
if len(selected_cols) >= 2:
|
758 |
+
corr_matrix = df[selected_cols].corr()
|
759 |
+
fig = px.imshow(corr_matrix, text_auto=True,
|
760 |
+
color_continuous_scale=px.colors.diverging.RdBu_r)
|
|
|
761 |
else:
|
762 |
+
st.warning("Select at least 2 numerical columns for heatmap")
|
763 |
+
|
764 |
+
# Plot Customization
|
765 |
+
if fig:
|
766 |
+
with st.expander("🎭 Style Customization"):
|
767 |
+
col1, col2 = st.columns(2)
|
768 |
+
with col1:
|
769 |
+
color_theme = st.selectbox("Color Theme", px.colors.named_colorscales(),
|
770 |
+
index=px.colors.named_colorscales().index('Viridis'))
|
771 |
+
fig.update_layout(colorway=px.colors.sequential[color_theme])
|
772 |
+
with col2:
|
773 |
+
fig.update_layout(
|
774 |
+
template=st.selectbox("Theme Style", ["plotly", "plotly_dark", "ggplot2", "seaborn"]),
|
775 |
+
font_size=st.slider("Font Size", 10, 24, 14)
|
776 |
+
)
|
777 |
+
|
778 |
+
# Display Plot
|
779 |
+
st.plotly_chart(fig, use_container_width=True)
|
780 |
+
|
781 |
+
# Download Button
|
782 |
+
plot_html = fig.to_html()
|
783 |
+
st.download_button(
|
784 |
+
label="📥 Download Plot",
|
785 |
+
data=plot_html,
|
786 |
+
file_name=f"{plot_type.replace(' ', '_')}_plot.html",
|
787 |
+
mime="text/html"
|
788 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|