Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -17,6 +17,7 @@ import scipy.stats as stats
|
|
17 |
import matplotlib.pyplot as plt #For SHAP charts
|
18 |
from scipy.stats import pearsonr, spearmanr
|
19 |
from sklearn.inspection import permutation_importance
|
|
|
20 |
from sklearn.preprocessing import StandardScaler, LabelEncoder
|
21 |
from sklearn.model_selection import train_test_split
|
22 |
from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
|
@@ -516,14 +517,14 @@ elif app_mode == "Data Cleaning":
|
|
516 |
if columns_to_drop:
|
517 |
st.warning(f"Will drop: {', '.join(columns_to_drop)}")
|
518 |
if st.button("Confirm Drop (Columns)"):
|
519 |
-
|
520 |
-
|
521 |
-
|
522 |
-
|
|
|
|
|
|
|
523 |
|
524 |
-
# --------------------------
|
525 |
-
# Label Encoding
|
526 |
-
# --------------------------
|
527 |
# --------------------------
|
528 |
# Label/One-Hot Encoding
|
529 |
# --------------------------
|
@@ -550,8 +551,6 @@ elif app_mode == "Data Cleaning":
|
|
550 |
except Exception as e:
|
551 |
st.error(f"Error: {str(e)}")
|
552 |
|
553 |
-
|
554 |
-
|
555 |
# --------------------------
|
556 |
# StandardScaler
|
557 |
# --------------------------
|
@@ -565,7 +564,7 @@ elif app_mode == "Data Cleaning":
|
|
565 |
scaler = StandardScaler()
|
566 |
new_df[scale_cols] = scaler.fit_transform(new_df[scale_cols])
|
567 |
update_cleaned_data(new_df)
|
568 |
-
st.rerun()#Force re-run after apply
|
569 |
except Exception as e:
|
570 |
st.error(f"Error: {str(e)}")
|
571 |
|
|
|
17 |
import matplotlib.pyplot as plt #For SHAP charts
|
18 |
from scipy.stats import pearsonr, spearmanr
|
19 |
from sklearn.inspection import permutation_importance
|
20 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
21 |
from sklearn.preprocessing import StandardScaler, LabelEncoder
|
22 |
from sklearn.model_selection import train_test_split
|
23 |
from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
|
|
|
517 |
if columns_to_drop:
|
518 |
st.warning(f"Will drop: {', '.join(columns_to_drop)}")
|
519 |
if st.button("Confirm Drop (Columns)"):
|
520 |
+
try:
|
521 |
+
new_df = df.copy()
|
522 |
+
new_df = new_df.drop(columns=columns_to_drop)
|
523 |
+
update_cleaned_data(new_df)
|
524 |
+
st.rerun() # Force re-run after apply
|
525 |
+
except Exception as e:
|
526 |
+
st.error(f"Error: {str(e)}")
|
527 |
|
|
|
|
|
|
|
528 |
# --------------------------
|
529 |
# Label/One-Hot Encoding
|
530 |
# --------------------------
|
|
|
551 |
except Exception as e:
|
552 |
st.error(f"Error: {str(e)}")
|
553 |
|
|
|
|
|
554 |
# --------------------------
|
555 |
# StandardScaler
|
556 |
# --------------------------
|
|
|
564 |
scaler = StandardScaler()
|
565 |
new_df[scale_cols] = scaler.fit_transform(new_df[scale_cols])
|
566 |
update_cleaned_data(new_df)
|
567 |
+
st.rerun() # Force re-run after apply
|
568 |
except Exception as e:
|
569 |
st.error(f"Error: {str(e)}")
|
570 |
|