Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,30 +1,35 @@
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
-
import plotly.express as px
|
4 |
import numpy as np
|
5 |
-
|
6 |
-
|
7 |
-
from sklearn.cluster import KMeans
|
8 |
-
from sklearn.metrics import accuracy_score, r2_score, silhouette_score
|
9 |
-
from sklearn.preprocessing import StandardScaler
|
10 |
from ydata_profiling import ProfileReport
|
11 |
from streamlit_pandas_profiling import st_profile_report
|
|
|
|
|
12 |
from groq import Groq
|
13 |
from langchain_community.vectorstores import FAISS
|
14 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
15 |
-
from langchain_huggingface import HuggingFaceEmbeddings
|
16 |
from langchain_community.document_loaders import TextLoader
|
17 |
-
import
|
|
|
|
|
|
|
|
|
18 |
import tempfile
|
19 |
|
20 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
client = Groq(api_key=os.getenv("GROQ_API_KEY"))
|
22 |
-
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
23 |
|
24 |
-
#
|
25 |
-
|
26 |
|
27 |
-
# Custom CSS
|
28 |
st.markdown("""
|
29 |
<style>
|
30 |
:root {
|
@@ -36,7 +41,7 @@ st.markdown("""
|
|
36 |
.stApp {
|
37 |
background-color: var(--silver);
|
38 |
font-family: 'Inter', sans-serif;
|
39 |
-
max-width:
|
40 |
margin: 0 auto;
|
41 |
padding: 10px;
|
42 |
}
|
@@ -45,16 +50,16 @@ st.markdown("""
|
|
45 |
color: white;
|
46 |
padding: 15px;
|
47 |
border-radius: 5px;
|
48 |
-
text-align: center;
|
49 |
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
|
|
50 |
}
|
51 |
.header-title {
|
52 |
-
font-size: 1.
|
53 |
font-weight: 700;
|
54 |
margin: 0;
|
55 |
}
|
56 |
.header-subtitle {
|
57 |
-
font-size:
|
58 |
margin-top: 5px;
|
59 |
}
|
60 |
.nav-bar {
|
@@ -78,38 +83,51 @@ st.markdown("""
|
|
78 |
background-color: var(--gold);
|
79 |
color: white;
|
80 |
}
|
81 |
-
.card {
|
82 |
-
background-color: white;
|
83 |
-
border-radius: 5px;
|
84 |
-
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
85 |
-
padding: 20px;
|
86 |
-
margin-bottom: 20px;
|
87 |
-
}
|
88 |
.chat-container {
|
89 |
background-color: white;
|
90 |
border-radius: 5px;
|
|
|
91 |
padding: 15px;
|
92 |
margin-top: 20px;
|
93 |
-
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
94 |
}
|
95 |
.user-message {
|
96 |
background-color: var(--blue);
|
97 |
color: white;
|
98 |
-
border-radius:
|
99 |
-
padding:
|
100 |
-
max-width: 80%;
|
101 |
margin-left: auto;
|
|
|
102 |
margin-bottom: 10px;
|
103 |
}
|
104 |
.bot-message {
|
105 |
background-color: #F0F0F0;
|
106 |
color: var(--text-color);
|
107 |
-
border-radius:
|
108 |
-
padding:
|
109 |
-
max-width: 80%;
|
110 |
margin-right: auto;
|
|
|
111 |
margin-bottom: 10px;
|
112 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
.stButton > button {
|
114 |
background-color: var(--gold);
|
115 |
color: white;
|
@@ -123,10 +141,10 @@ st.markdown("""
|
|
123 |
}
|
124 |
@media (max-width: 768px) {
|
125 |
.header-title {
|
126 |
-
font-size: 1.
|
127 |
}
|
128 |
.header-subtitle {
|
129 |
-
font-size: 0.
|
130 |
}
|
131 |
.nav-bar {
|
132 |
flex-direction: column;
|
@@ -137,62 +155,43 @@ st.markdown("""
|
|
137 |
width: 100%;
|
138 |
text-align: center;
|
139 |
}
|
140 |
-
.
|
141 |
padding: 10px;
|
142 |
}
|
143 |
.stApp {
|
144 |
padding: 5px;
|
145 |
}
|
|
|
|
|
|
|
146 |
}
|
147 |
-
|
148 |
-
<footer style='text-align: center; padding: 10px; background-color: var(--blue); color: white; border-radius: 5px; margin-top: 20px;'>
|
149 |
-
<p>Created by Calvin Allen-Crawford</p>
|
150 |
-
</footer>
|
151 |
""", unsafe_allow_html=True)
|
152 |
|
153 |
-
#
|
154 |
-
|
155 |
-
st.
|
156 |
-
if 'chat_history' not in st.session_state:
|
157 |
-
st.session_state.chat_history = []
|
158 |
-
if 'vector_store' not in st.session_state:
|
159 |
-
st.session_state.vector_store = None
|
160 |
-
if 'custom_layers' not in st.session_state:
|
161 |
-
st.session_state.custom_layers = []
|
162 |
-
if 'prebuilt_selection' not in st.session_state:
|
163 |
-
st.session_state.prebuilt_selection = None
|
164 |
-
if 'model_config' not in st.session_state:
|
165 |
-
st.session_state.model_config = {}
|
166 |
-
if 'model_builder_mode' not in st.session_state:
|
167 |
-
st.session_state.model_builder_mode = "prebuilt"
|
168 |
-
if 'custom_model_type' not in st.session_state:
|
169 |
-
st.session_state.custom_model_type = "classification"
|
170 |
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
"description": "Detects anomalies in financial transactions.",
|
180 |
-
"architecture": {"type": "classification", "hidden_layers": [(256, "relu"), (128, "relu"), (64, "relu")], "dropout": 0.4, "optimizer": "adam", "learning_rate": 0.0005},
|
181 |
-
"domain": "Financial"
|
182 |
-
},
|
183 |
-
"Customer Segmentation Engine": {
|
184 |
-
"description": "Advanced customer segmentation.",
|
185 |
-
"architecture": {"type": "clustering", "n_clusters": 5, "algorithm": "kmeans", "init": "k-means++", "n_init": 10},
|
186 |
-
"domain": "Marketing"
|
187 |
-
}
|
188 |
-
}
|
189 |
|
190 |
-
# Helper Functions (unchanged)
|
191 |
def convert_df_to_text(df):
|
192 |
text = f"Dataset Summary: {df.shape[0]} rows, {df.shape[1]} columns\n"
|
193 |
text += f"Missing Values: {df.isna().sum().sum()}\n"
|
|
|
194 |
for col in df.columns:
|
195 |
-
|
|
|
|
|
|
|
|
|
|
|
196 |
return text
|
197 |
|
198 |
def create_vector_store(df_text):
|
@@ -201,122 +200,35 @@ def create_vector_store(df_text):
|
|
201 |
temp_path = temp_file.name
|
202 |
loader = TextLoader(temp_path)
|
203 |
documents = loader.load()
|
204 |
-
|
|
|
205 |
vector_store = FAISS.from_documents(texts, embeddings)
|
206 |
os.unlink(temp_path)
|
207 |
return vector_store
|
208 |
|
209 |
-
def
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
if
|
234 |
-
|
235 |
-
return MLPRegressor(hidden_layer_sizes=layer_sizes, activation=activation, solver=config.get("optimizer", "adam"), learning_rate_init=config.get("learning_rate", 0.001), random_state=42)
|
236 |
-
|
237 |
-
# Main Application
|
238 |
-
def main():
|
239 |
-
st.markdown('<div class="header"><h1 class="header-title">Neural-Vision Enhanced</h1><p class="header-subtitle">Build & Train Neural Networks</p></div>', unsafe_allow_html=True)
|
240 |
-
|
241 |
-
# Top Navigation Bar
|
242 |
-
st.markdown('<div class="nav-bar">', unsafe_allow_html=True)
|
243 |
-
col1, col2, col3 = st.columns([1, 2, 1])
|
244 |
-
with col1:
|
245 |
-
st.markdown('<div class="nav-item">Data Input</div>', unsafe_allow_html=True)
|
246 |
-
uploaded_file = st.file_uploader("Upload CSV Dataset", type=["csv"])
|
247 |
-
if uploaded_file:
|
248 |
-
df = pd.read_csv(uploaded_file)
|
249 |
-
st.session_state.vector_store = create_vector_store(convert_df_to_text(df))
|
250 |
-
st.success("Dataset uploaded!")
|
251 |
-
with col2:
|
252 |
-
st.markdown('<div class="nav-item">Navigation</div>', unsafe_allow_html=True)
|
253 |
-
nav_option = st.selectbox("Navigate", ["Model Builder", "Chat", "Train Model"], label_visibility="collapsed")
|
254 |
-
with col3:
|
255 |
-
st.markdown('<div class="nav-item">Info</div>', unsafe_allow_html=True)
|
256 |
-
st.write("Built with Streamlit & Groq")
|
257 |
-
st.markdown('</div>', unsafe_allow_html=True)
|
258 |
-
|
259 |
-
# Main Content
|
260 |
-
if nav_option == "Model Builder":
|
261 |
-
st.markdown('<div class="card"><h2>Model Builder</h2></div>', unsafe_allow_html=True)
|
262 |
-
mode = st.selectbox("Domain", ["Legal", "Financial", "Marketing"])
|
263 |
-
model_builder_mode = st.radio("Mode", ["Prebuilt", "Custom"])
|
264 |
-
st.session_state.model_builder_mode = "prebuilt" if model_builder_mode == "Prebuilt" else "custom"
|
265 |
-
|
266 |
-
if st.session_state.model_builder_mode == "prebuilt":
|
267 |
-
for name, details in PREBUILT_MODELS.items():
|
268 |
-
if st.button(f"{name}: {details['description']}", key=name):
|
269 |
-
st.session_state.prebuilt_selection = name
|
270 |
-
st.session_state.model_config = details["architecture"]
|
271 |
-
if st.session_state.prebuilt_selection:
|
272 |
-
st.json(st.session_state.model_config)
|
273 |
-
else:
|
274 |
-
st.session_state.custom_model_type = st.selectbox("Type", ["classification", "regression", "clustering"])
|
275 |
-
if st.session_state.custom_model_type != "clustering":
|
276 |
-
layer_count = st.number_input("Layers", min_value=1, value=1)
|
277 |
-
st.session_state.custom_layers = []
|
278 |
-
for i in range(int(layer_count)):
|
279 |
-
size = st.number_input(f"Layer {i+1} Size", min_value=1, value=100, key=f"size_{i}")
|
280 |
-
activation = st.selectbox(f"Layer {i+1} Activation", ["relu", "tanh"], key=f"act_{i}")
|
281 |
-
st.session_state.custom_layers.append((size, activation))
|
282 |
-
optimizer = st.selectbox("Optimizer", ["adam", "sgd"])
|
283 |
-
st.session_state.model_config = {"type": st.session_state.custom_model_type, "hidden_layers": st.session_state.custom_layers, "optimizer": optimizer, "learning_rate": 0.001}
|
284 |
-
else:
|
285 |
-
st.session_state.model_config = {"type": "clustering", "n_clusters": st.number_input("Clusters", min_value=2, value=3)}
|
286 |
-
if st.button("Finalize"): st.json(st.session_state.model_config)
|
287 |
-
|
288 |
-
elif nav_option == "Chat":
|
289 |
-
st.markdown('<div class="chat-container"><h3>Chat with Grok</h3></div>', unsafe_allow_html=True)
|
290 |
-
mode = st.selectbox("Domain", ["Legal", "Financial", "Marketing"])
|
291 |
-
prompt = st.text_input("Ask a question:")
|
292 |
-
if prompt:
|
293 |
-
response = get_groq_response(prompt, mode)
|
294 |
-
st.session_state.chat_history.append({"role": "user", "content": prompt})
|
295 |
-
st.session_state.chat_history.append({"role": "bot", "content": response})
|
296 |
-
for msg in st.session_state.chat_history:
|
297 |
-
st.markdown(f'<div class={"user-message" if msg["role"] == "user" else "bot-message"}>{msg["content"]}</div>', unsafe_allow_html=True)
|
298 |
-
|
299 |
-
elif nav_option == "Train Model":
|
300 |
-
if uploaded_file and st.session_state.model_config:
|
301 |
-
st.markdown('<div class="card"><h2>Train Model</h2></div>', unsafe_allow_html=True)
|
302 |
-
df = pd.read_csv(uploaded_file)
|
303 |
-
X = df.drop(columns=[df.columns[-1]]) if st.session_state.model_config["type"] != "clustering" else df
|
304 |
-
y = df[df.columns[-1]] if st.session_state.model_config["type"] != "clustering" else None
|
305 |
-
if st.button("Train"):
|
306 |
-
scaler = StandardScaler()
|
307 |
-
X_scaled = scaler.fit_transform(X)
|
308 |
-
model = build_model_from_config(st.session_state.model_config, X_scaled, y)
|
309 |
-
if st.session_state.model_config["type"] != "clustering":
|
310 |
-
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)
|
311 |
-
model.fit(X_train, y_train)
|
312 |
-
y_pred = model.predict(X_test)
|
313 |
-
st.session_state.metrics = {"accuracy" if st.session_state.model_config["type"] == "classification" else "r2_score": accuracy_score(y_test, y_pred) if st.session_state.model_config["type"] == "classification" else r2_score(y_test, y_pred)}
|
314 |
-
else:
|
315 |
-
model.fit(X_scaled)
|
316 |
-
st.session_state.metrics = {"silhouette_score": silhouette_score(X_scaled, model.labels_)}
|
317 |
-
st.json(st.session_state.metrics)
|
318 |
-
else:
|
319 |
-
st.warning("Upload a dataset and configure a model first!")
|
320 |
-
|
321 |
-
if __name__ == "__main__":
|
322 |
-
main()
|
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
|
|
3 |
import numpy as np
|
4 |
+
import plotly.express as px
|
5 |
+
import plotly.graph_objects as go
|
|
|
|
|
|
|
6 |
from ydata_profiling import ProfileReport
|
7 |
from streamlit_pandas_profiling import st_profile_report
|
8 |
+
import os
|
9 |
+
from dotenv import load_dotenv
|
10 |
from groq import Groq
|
11 |
from langchain_community.vectorstores import FAISS
|
|
|
|
|
12 |
from langchain_community.document_loaders import TextLoader
|
13 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
14 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
15 |
+
import re
|
16 |
+
from scipy import stats
|
17 |
+
from sklearn.preprocessing import StandardScaler, LabelEncoder, OneHotEncoder
|
18 |
import tempfile
|
19 |
|
20 |
+
# Set page config as the first Streamlit command
|
21 |
+
st.set_page_config(page_title="Data-Vision Pro", layout="wide")
|
22 |
+
|
23 |
+
# Load environment variables
|
24 |
+
load_dotenv()
|
25 |
+
|
26 |
+
# Initialize Groq client
|
27 |
client = Groq(api_key=os.getenv("GROQ_API_KEY"))
|
|
|
28 |
|
29 |
+
# Initialize HuggingFace embeddings for FAISS
|
30 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
31 |
|
32 |
+
# Custom CSS with Silver, Blue, and Gold Theme + Top Nav
|
33 |
st.markdown("""
|
34 |
<style>
|
35 |
:root {
|
|
|
41 |
.stApp {
|
42 |
background-color: var(--silver);
|
43 |
font-family: 'Inter', sans-serif;
|
44 |
+
max-width: 900px;
|
45 |
margin: 0 auto;
|
46 |
padding: 10px;
|
47 |
}
|
|
|
50 |
color: white;
|
51 |
padding: 15px;
|
52 |
border-radius: 5px;
|
|
|
53 |
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
54 |
+
text-align: center;
|
55 |
}
|
56 |
.header-title {
|
57 |
+
font-size: 1.5rem;
|
58 |
font-weight: 700;
|
59 |
margin: 0;
|
60 |
}
|
61 |
.header-subtitle {
|
62 |
+
font-size: 0.9rem;
|
63 |
margin-top: 5px;
|
64 |
}
|
65 |
.nav-bar {
|
|
|
83 |
background-color: var(--gold);
|
84 |
color: white;
|
85 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
.chat-container {
|
87 |
background-color: white;
|
88 |
border-radius: 5px;
|
89 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
90 |
padding: 15px;
|
91 |
margin-top: 20px;
|
|
|
92 |
}
|
93 |
.user-message {
|
94 |
background-color: var(--blue);
|
95 |
color: white;
|
96 |
+
border-radius: 18px 18px 4px 18px;
|
97 |
+
padding: 12px 16px;
|
|
|
98 |
margin-left: auto;
|
99 |
+
max-width: 80%;
|
100 |
margin-bottom: 10px;
|
101 |
}
|
102 |
.bot-message {
|
103 |
background-color: #F0F0F0;
|
104 |
color: var(--text-color);
|
105 |
+
border-radius: 18px 18px 18px 4px;
|
106 |
+
padding: 12px 16px;
|
|
|
107 |
margin-right: auto;
|
108 |
+
max-width: 80%;
|
109 |
margin-bottom: 10px;
|
110 |
}
|
111 |
+
.footer {
|
112 |
+
text-align: center;
|
113 |
+
margin-top: 20px;
|
114 |
+
color: var(--text-color);
|
115 |
+
font-size: 0.8rem;
|
116 |
+
}
|
117 |
+
.tech-badge {
|
118 |
+
display: inline-block;
|
119 |
+
background-color: #E6ECEF;
|
120 |
+
color: var(--blue);
|
121 |
+
padding: 4px 8px;
|
122 |
+
border-radius: 12px;
|
123 |
+
font-size: 0.7rem;
|
124 |
+
margin: 0 4px;
|
125 |
+
}
|
126 |
+
h2 {
|
127 |
+
color: var(--blue);
|
128 |
+
border-bottom: 2px solid var(--gold);
|
129 |
+
padding-bottom: 5px;
|
130 |
+
}
|
131 |
.stButton > button {
|
132 |
background-color: var(--gold);
|
133 |
color: white;
|
|
|
141 |
}
|
142 |
@media (max-width: 768px) {
|
143 |
.header-title {
|
144 |
+
font-size: 1.2rem;
|
145 |
}
|
146 |
.header-subtitle {
|
147 |
+
font-size: 0.8rem;
|
148 |
}
|
149 |
.nav-bar {
|
150 |
flex-direction: column;
|
|
|
155 |
width: 100%;
|
156 |
text-align: center;
|
157 |
}
|
158 |
+
.chat-container {
|
159 |
padding: 10px;
|
160 |
}
|
161 |
.stApp {
|
162 |
padding: 5px;
|
163 |
}
|
164 |
+
h2 {
|
165 |
+
font-size: 1.2rem;
|
166 |
+
}
|
167 |
}
|
168 |
+
</style>
|
|
|
|
|
|
|
169 |
""", unsafe_allow_html=True)
|
170 |
|
171 |
+
# Helper Functions
|
172 |
+
def enhance_section_title(title):
|
173 |
+
st.markdown(f"<h2 style='border-bottom: 2px solid var(--gold); padding-bottom: 5px; color: var(--blue);'>{title}</h2>", unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
|
175 |
+
def update_cleaned_data(df):
|
176 |
+
st.session_state.cleaned_data = df
|
177 |
+
if 'data_versions' not in st.session_state:
|
178 |
+
st.session_state.data_versions = [st.session_state.raw_data.copy()]
|
179 |
+
st.session_state.data_versions.append(df.copy())
|
180 |
+
st.session_state.dataset_text = convert_df_to_text(df)
|
181 |
+
st.success("✅ Action completed successfully!")
|
182 |
+
st.rerun()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
|
|
|
184 |
def convert_df_to_text(df):
|
185 |
text = f"Dataset Summary: {df.shape[0]} rows, {df.shape[1]} columns\n"
|
186 |
text += f"Missing Values: {df.isna().sum().sum()}\n"
|
187 |
+
text += "Columns:\n"
|
188 |
for col in df.columns:
|
189 |
+
if pd.api.types.is_numeric_dtype(df[col]):
|
190 |
+
mean_value = f"{df[col].mean():.2f}"
|
191 |
+
else:
|
192 |
+
mean_value = "N/A"
|
193 |
+
text += f"- {col} ({df[col].dtype}): Mean={mean_value}, Min={df[col].min()}, Max={df[col].max()}" if pd.api.types.is_numeric_dtype(df[col]) else f"- {col} ({df[col].dtype}): Unique={df[col].nunique()}, Top={df[col].mode()[0] if not df[col].mode().empty else 'N/A'}"
|
194 |
+
text += f", Missing={df[col].isna().sum()}\n"
|
195 |
return text
|
196 |
|
197 |
def create_vector_store(df_text):
|
|
|
200 |
temp_path = temp_file.name
|
201 |
loader = TextLoader(temp_path)
|
202 |
documents = loader.load()
|
203 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
|
204 |
+
texts = text_splitter.split_documents(documents)
|
205 |
vector_store = FAISS.from_documents(texts, embeddings)
|
206 |
os.unlink(temp_path)
|
207 |
return vector_store
|
208 |
|
209 |
+
def update_vector_store_with_plot(plot_text, existing_vector_store):
|
210 |
+
with tempfile.NamedTemporaryFile(mode='w', suffix='.txt', delete=False) as temp_file:
|
211 |
+
temp_file.write(plot_text)
|
212 |
+
temp_path = temp_file.name
|
213 |
+
loader = TextLoader(temp_path)
|
214 |
+
documents = loader.load()
|
215 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
|
216 |
+
texts = text_splitter.split_documents(documents)
|
217 |
+
if existing_vector_store:
|
218 |
+
existing_vector_store.add_documents(texts)
|
219 |
+
else:
|
220 |
+
existing_vector_store = FAISS.from_documents(texts, embeddings)
|
221 |
+
os.unlink(temp_path)
|
222 |
+
return existing_vector_store
|
223 |
+
|
224 |
+
def extract_plot_data(plot_info, df):
|
225 |
+
plot_type = plot_info["type"]
|
226 |
+
x_col = plot_info["x"]
|
227 |
+
y_col = plot_info["y"] if "y" in plot_info else None
|
228 |
+
data = pd.read_json(plot_info["data"])
|
229 |
+
plot_text = f"Plot Type: {plot_type}\n"
|
230 |
+
plot_text += f"X-Axis: {x_col}\n"
|
231 |
+
if y_col:
|
232 |
+
plot_text += f"Y-Axis: {y_col}\n"
|
233 |
+
if plot_type == "Scatter Plot" and y_col:
|
234 |
+
correlation = data[x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|