Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,24 @@
|
|
1 |
-
import
|
|
|
2 |
import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
import numpy as np
|
|
|
4 |
import plotly.express as px
|
5 |
from scipy import stats
|
6 |
import plotly.colors as pc
|
@@ -27,16 +45,14 @@ from sklearn.svm import SVR, SVC
|
|
27 |
from sklearn.feature_selection import SelectKBest
|
28 |
from sklearn.experimental import enable_iterative_imputer
|
29 |
from sklearn.impute import IterativeImputer
|
30 |
-
from sklearn.neural_network import MLPRegressor
|
31 |
-
from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error, accuracy_score, precision_score, recall_score, f1_score
|
32 |
from sklearn.impute import KNNImputer, SimpleImputer
|
33 |
from sklearn.preprocessing import RobustScaler, StandardScaler, OneHotEncoder, LabelEncoder
|
34 |
from sklearn.compose import ColumnTransformer
|
35 |
from sklearn.pipeline import Pipeline
|
36 |
-
from ydata_profiling import ProfileReport
|
37 |
-
from streamlit_pandas_profiling import st_profile_report
|
38 |
-
|
39 |
|
|
|
40 |
|
41 |
|
42 |
# Enhanced configuration
|
@@ -51,7 +67,12 @@ if 'raw_data' not in st.session_state:
|
|
51 |
st.session_state.raw_data = None
|
52 |
if 'cleaned_data' not in st.session_state:
|
53 |
st.session_state.cleaned_data = None
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
55 |
# Security: Set allowed file types
|
56 |
ALLOWED_EXTENSIONS = {'csv', 'xlsx', 'parquet', 'feather'}
|
57 |
MAX_FILE_SIZE_MB = 250 # 250MB limit
|
@@ -60,15 +81,15 @@ def validate_file(file):
|
|
60 |
"""Comprehensive file validation"""
|
61 |
if not file:
|
62 |
return False, "No file uploaded"
|
63 |
-
|
64 |
extension = file.name.split('.')[-1].lower()
|
65 |
if extension not in ALLOWED_EXTENSIONS:
|
66 |
return False, f"Unsupported file type: {extension}"
|
67 |
-
|
68 |
file_size_mb = file.size / (1024 * 1024)
|
69 |
if file_size_mb > MAX_FILE_SIZE_MB:
|
70 |
return False, f"File size exceeds {MAX_FILE_SIZE_MB}MB limit"
|
71 |
-
|
72 |
return True, ""
|
73 |
|
74 |
@st.cache_data(ttl=3600, show_spinner="Analyzing data quality...")
|
@@ -164,10 +185,10 @@ if app_mode == "Data Upload":
|
|
164 |
df = pd.read_parquet(uploaded_file)
|
165 |
elif uploaded_file.name.endswith('.feather'):
|
166 |
df = pd.read_feather(uploaded_file)
|
167 |
-
|
168 |
st.session_state.raw_data = df
|
169 |
st.success("Dataset loaded successfully!")
|
170 |
-
|
171 |
except Exception as e:
|
172 |
st.error(f"Error loading file: {str(e)}")
|
173 |
st.stop()
|
@@ -181,7 +202,7 @@ if app_mode == "Data Upload":
|
|
181 |
# Data Health Dashboard
|
182 |
st.subheader("📊 Data Health Dashboard")
|
183 |
report = enhanced_quality_report(df)
|
184 |
-
|
185 |
col1, col2, col3, col4 = st.columns(4)
|
186 |
col1.metric("Total Rows", report['basic_stats']['rows'])
|
187 |
col2.metric("Total Columns", report['basic_stats']['columns'])
|
@@ -192,11 +213,11 @@ if app_mode == "Data Upload":
|
|
192 |
with st.expander("🔍 Deep Column Analysis", expanded=True):
|
193 |
selected_col = st.selectbox("Select column to inspect", df.columns)
|
194 |
col_info = report['column_analysis'][selected_col]
|
195 |
-
|
196 |
st.write(f"**Type:** {col_info['type']}")
|
197 |
st.write(f"**Unique Values:** {col_info['unique']}")
|
198 |
st.write(f"**Missing Values:** {col_info['missing']} ({col_info['missing']/len(df):.1%})")
|
199 |
-
|
200 |
if pd.api.types.is_numeric_dtype(df[selected_col]):
|
201 |
st.write("**Distribution:**")
|
202 |
st.line_chart(df[selected_col])
|
@@ -218,7 +239,7 @@ if app_mode == "Data Upload":
|
|
218 |
recommendations.append(f"⚠️ Consider dropping {col} (>{50}% missing)")
|
219 |
if data['unique'] == len(df):
|
220 |
recommendations.append(f"🔍 Investigate {col} - potential unique identifier")
|
221 |
-
|
222 |
if recommendations:
|
223 |
st.write("### Recommended Actions")
|
224 |
for rec in recommendations[:5]: # Show top 5
|
@@ -234,7 +255,7 @@ if app_mode == "Data Upload":
|
|
234 |
# Advanced Profiling
|
235 |
if st.button("🚀 Generate Full Data Profile"):
|
236 |
with st.spinner("Generating comprehensive report..."):
|
237 |
-
pr = ProfileReport(df, explorative=True)
|
238 |
st_profile_report(pr)
|
239 |
|
240 |
elif app_mode == "Smart Cleaning":
|
@@ -266,7 +287,7 @@ elif app_mode == "Smart Cleaning":
|
|
266 |
st.caption(f"Current Version: {st.session_state.current_version+1}/{len(st.session_state.data_versions)}")
|
267 |
progress = (st.session_state.current_version + 1) / len(st.session_state.data_versions)
|
268 |
st.progress(progress)
|
269 |
-
|
270 |
col1, col2 = st.columns(2)
|
271 |
with col1:
|
272 |
if st.button("⏮️ Undo Last Action", disabled=st.session_state.current_version == 0):
|
@@ -281,7 +302,7 @@ elif app_mode == "Smart Cleaning":
|
|
281 |
st.subheader("📊 Data Health Dashboard")
|
282 |
with st.expander("Show Comprehensive Data Report", expanded=True):
|
283 |
from pandas_profiling import ProfileReport
|
284 |
-
pr = ProfileReport(df,
|
285 |
st_profile_report(pr)
|
286 |
|
287 |
# Enhanced Health Summary with Cards
|
@@ -301,11 +322,11 @@ elif app_mode == "Smart Cleaning":
|
|
301 |
st.markdown("### 📈 Data Health Visualizations")
|
302 |
col1, col2 = st.columns(2)
|
303 |
with col1:
|
304 |
-
st.plotly_chart(px.bar(df.isna().sum(), title="Missing Values per Column",
|
305 |
-
labels={'index': 'Column', 'value': 'Missing Count'},
|
306 |
color=df.isna().sum(), color_continuous_scale="Bluered"))
|
307 |
with col2:
|
308 |
-
st.plotly_chart(px.pie(values=df.dtypes.value_counts(), names=df.dtypes.value_counts().index,
|
309 |
title="Data Type Distribution", hole=0.3))
|
310 |
|
311 |
# Cleaning Operations with Tabs
|
@@ -319,15 +340,15 @@ elif app_mode == "Smart Cleaning":
|
|
319 |
if missing_cols:
|
320 |
st.write("Columns with missing values:")
|
321 |
cols = st.multiselect("Select columns to clean", missing_cols, default=missing_cols)
|
322 |
-
|
323 |
method = st.radio("Imputation Method", [
|
324 |
-
"Drop Missing",
|
325 |
-
"Mean/Median/Mode",
|
326 |
-
"KNN Imputation",
|
327 |
-
"MICE Imputation",
|
328 |
"Deep Learning Imputation"
|
329 |
], horizontal=True)
|
330 |
-
|
331 |
if st.button(f"Apply {method}"):
|
332 |
try:
|
333 |
original_df = df.copy()
|
@@ -348,7 +369,7 @@ elif app_mode == "Smart Cleaning":
|
|
348 |
st.plotly_chart(px.histogram(df, x=df.duplicated(), title="Duplicate Distribution"))
|
349 |
dup_strategy = st.radio("Duplicate Strategy", [
|
350 |
"Remove All Duplicates",
|
351 |
-
"Keep First Occurrence",
|
352 |
"Keep Last Occurrence"
|
353 |
])
|
354 |
if st.button("Handle Duplicates"):
|
@@ -373,7 +394,7 @@ elif app_mode == "Smart Cleaning":
|
|
373 |
with col2:
|
374 |
col_to_convert = st.selectbox("Select column to convert", df.columns)
|
375 |
new_type = st.selectbox("New Data Type", [
|
376 |
-
"String", "Integer", "Float",
|
377 |
"Boolean", "Datetime", "Category"
|
378 |
])
|
379 |
if st.button("Convert Data Type"):
|
@@ -404,27 +425,27 @@ elif app_mode == "Smart Cleaning":
|
|
404 |
if st.button("💾 Save Cleaned Data"):
|
405 |
st.session_state.cleaned_data = df
|
406 |
st.balloons()
|
407 |
-
|
408 |
# Generate comprehensive report
|
409 |
from pandas_profiling import ProfileReport
|
410 |
pr = ProfileReport(df, title="Cleaned Data Report")
|
411 |
st_profile_report(pr)
|
412 |
-
|
413 |
# Show cleaning log with diffs
|
414 |
st.subheader("📝 Cleaning Log")
|
415 |
st.table(pd.DataFrame({
|
416 |
"Step": range(1, len(cleaning_actions)+1),
|
417 |
"Action": cleaning_actions
|
418 |
}))
|
419 |
-
|
420 |
# Show dataset comparison
|
421 |
col1, col2 = st.columns(2)
|
422 |
with col1:
|
423 |
st.write("Original Data Shape:", st.session_state.raw_data.shape)
|
424 |
with col2:
|
425 |
st.write("Cleaned Data Shape:", df.shape)
|
426 |
-
|
427 |
-
st.success("✅ Cleaned data saved successfully! You can now proceed to analysis.")
|
428 |
elif app_mode == "Advanced EDA":
|
429 |
st.title("🔍 Advanced Exploratory Data Analysis")
|
430 |
st.markdown("""
|
@@ -458,7 +479,7 @@ elif app_mode == "Advanced EDA":
|
|
458 |
|
459 |
with col1:
|
460 |
st.header("📊 Visualization Setup")
|
461 |
-
|
462 |
# Plot Type Selection
|
463 |
plot_types = {
|
464 |
"Distribution": ["Histogram", "Box Plot", "Violin Plot", "Density Plot"],
|
@@ -466,7 +487,7 @@ elif app_mode == "Advanced EDA":
|
|
466 |
"Comparison": ["Bar Chart", "Pie Chart", "Parallel Coordinates"],
|
467 |
"3D": ["3D Scatter", "3D Surface"]
|
468 |
}
|
469 |
-
|
470 |
selected_category = st.selectbox("Plot Category", list(plot_types.keys()))
|
471 |
st.session_state.eda_config['plot_type'] = st.selectbox(
|
472 |
"Plot Type",
|
@@ -475,28 +496,28 @@ elif app_mode == "Advanced EDA":
|
|
475 |
|
476 |
# Dynamic Column Selectors
|
477 |
plot_type = st.session_state.eda_config['plot_type']
|
478 |
-
|
479 |
if plot_type in ["Histogram", "Box Plot", "Violin Plot", "Density Plot", "Bar Chart", "Pie Chart"]:
|
480 |
st.session_state.eda_config['x_col'] = st.selectbox(
|
481 |
"X Axis",
|
482 |
df.columns,
|
483 |
-
index=df.columns.get_loc(st.session_state.eda_config['x_col'])
|
484 |
if st.session_state.eda_config['x_col'] in df.columns else 0
|
485 |
)
|
486 |
-
|
487 |
if plot_type in ["Scatter Plot", "Line Plot", "Box Plot", "Violin Plot", "Density Plot"]:
|
488 |
st.session_state.eda_config['y_col'] = st.selectbox(
|
489 |
"Y Axis",
|
490 |
df.columns,
|
491 |
-
index=df.columns.get_loc(st.session_state.eda_config['y_col'])
|
492 |
if st.session_state.eda_config['y_col'] in df.columns else 0
|
493 |
)
|
494 |
-
|
495 |
if plot_type in ["3D Scatter", "3D Surface"]:
|
496 |
st.session_state.eda_config['z_col'] = st.selectbox(
|
497 |
"Z Axis",
|
498 |
df.columns,
|
499 |
-
index=df.columns.get_loc(st.session_state.eda_config['z_col'])
|
500 |
if st.session_state.eda_config['z_col'] in df.columns else 0
|
501 |
)
|
502 |
|
@@ -537,92 +558,92 @@ elif app_mode == "Advanced EDA":
|
|
537 |
with col2:
|
538 |
st.header("📈 Visualization")
|
539 |
config = st.session_state.eda_config
|
540 |
-
|
541 |
@st.cache_data(ttl=300)
|
542 |
def generate_plot(df, plot_type, config):
|
543 |
"""Cached plot generation function for better performance"""
|
544 |
try:
|
545 |
if plot_type == "Histogram":
|
546 |
return px.histogram(
|
547 |
-
df, x=config['x_col'],
|
548 |
color=config['color_col'],
|
549 |
nbins=30,
|
550 |
color_discrete_sequence=[config['color_palette']]
|
551 |
)
|
552 |
-
|
553 |
elif plot_type == "Scatter Plot":
|
554 |
return px.scatter(
|
555 |
df, x=config['x_col'], y=config['y_col'],
|
556 |
color=config['color_col'],
|
557 |
hover_data=config['hover_data_cols']
|
558 |
)
|
559 |
-
|
560 |
elif plot_type == "Box Plot":
|
561 |
return px.box(
|
562 |
df, x=config['x_col'], y=config['y_col'],
|
563 |
color=config['color_col']
|
564 |
)
|
565 |
-
|
566 |
elif plot_type == "Violin Plot":
|
567 |
return px.violin(
|
568 |
df, x=config['x_col'], y=config['y_col'],
|
569 |
color=config['color_col'],
|
570 |
box=True
|
571 |
)
|
572 |
-
|
573 |
elif plot_type == "Heatmap":
|
574 |
numeric_df = df.select_dtypes(include=np.number)
|
575 |
corr = numeric_df.corr()
|
576 |
return px.imshow(
|
577 |
-
corr,
|
578 |
text_auto=True,
|
579 |
color_continuous_scale=config['color_palette']
|
580 |
)
|
581 |
-
|
582 |
elif plot_type == "3D Scatter":
|
583 |
return px.scatter_3d(
|
584 |
df, x=config['x_col'], y=config['y_col'], z=config['z_col'],
|
585 |
color=config['color_col']
|
586 |
)
|
587 |
-
|
588 |
elif plot_type == "Bar Chart":
|
589 |
return px.bar(
|
590 |
df, x=config['x_col'], y=config['y_col'],
|
591 |
color=config['color_col']
|
592 |
)
|
593 |
-
|
594 |
elif plot_type == "Pie Chart":
|
595 |
return px.pie(
|
596 |
df, names=config['x_col'], values=config['y_col'],
|
597 |
color_discrete_sequence=[config['color_palette']]
|
598 |
)
|
599 |
-
|
600 |
elif plot_type == "Line Plot":
|
601 |
return px.line(
|
602 |
df, x=config['x_col'], y=config['y_col'],
|
603 |
color=config['color_col']
|
604 |
)
|
605 |
-
|
606 |
elif plot_type == "Pair Plot":
|
607 |
numeric_cols = df.select_dtypes(include=np.number).columns
|
608 |
return px.scatter_matrix(
|
609 |
df[numeric_cols],
|
610 |
color=config['color_col']
|
611 |
)
|
612 |
-
|
613 |
elif plot_type == "Parallel Coordinates":
|
614 |
numeric_df = df.select_dtypes(include=np.number)
|
615 |
return px.parallel_coordinates(
|
616 |
numeric_df,
|
617 |
color_continuous_scale=config['color_palette']
|
618 |
)
|
619 |
-
|
620 |
elif plot_type == "Density Plot":
|
621 |
return px.density_contour(
|
622 |
df, x=config['x_col'], y=config['y_col'],
|
623 |
color=config['color_col']
|
624 |
)
|
625 |
-
|
626 |
except Exception as e:
|
627 |
st.error(f"Plot generation error: {str(e)}")
|
628 |
return None
|
@@ -631,18 +652,18 @@ elif app_mode == "Advanced EDA":
|
|
631 |
fig = generate_plot(df, plot_type, config)
|
632 |
if fig:
|
633 |
st.plotly_chart(fig, use_container_width=True)
|
634 |
-
|
635 |
# Plot Statistics
|
636 |
with st.expander("📊 Plot Statistics"):
|
637 |
if plot_type in ["Histogram", "Box Plot", "Violin Plot"]:
|
638 |
st.write(f"**{config['x_col']} Statistics**")
|
639 |
st.table(df[config['x_col']].describe())
|
640 |
-
|
641 |
if plot_type in ["Scatter Plot", "Line Plot"]:
|
642 |
st.write(f"**Correlation between {config['x_col']} and {config['y_col']}**")
|
643 |
corr = df[[config['x_col'], config['y_col']]].corr().iloc[0,1]
|
644 |
st.metric("Pearson Correlation", f"{corr:.2f}")
|
645 |
-
|
646 |
if plot_type == "Heatmap":
|
647 |
st.write("**Correlation Matrix**")
|
648 |
numeric_df = df.select_dtypes(include=np.number)
|
@@ -656,16 +677,16 @@ elif app_mode == "Advanced EDA":
|
|
656 |
st.write("**Data Shape**")
|
657 |
st.write(f"Rows: {df.shape[0]}")
|
658 |
st.write(f"Columns: {df.shape[1]}")
|
659 |
-
|
660 |
with col2:
|
661 |
st.write("**Data Types**")
|
662 |
st.dataframe(df.dtypes.reset_index().rename(columns={
|
663 |
'index': 'Column', 0: 'Type'
|
664 |
}))
|
665 |
-
|
666 |
st.write("**Sample Data**")
|
667 |
st.dataframe(df.head())
|
668 |
-
|
669 |
# Model Training Section
|
670 |
elif app_mode == "Model Training":
|
671 |
st.title("🚂 Model Training Studio")
|
@@ -714,42 +735,45 @@ elif app_mode == "Model Training":
|
|
714 |
model_options = ["Logistic Regression", "Decision Tree", "Random Forest", "Gradient Boosting", "SVM", "Neural Network", "KNN", "Naive Bayes"]
|
715 |
model_name = st.selectbox("Select Model", model_options, help="Choose a model.")
|
716 |
|
717 |
-
|
718 |
-
|
719 |
-
|
720 |
-
|
721 |
-
|
722 |
-
|
723 |
-
|
724 |
-
|
725 |
-
|
726 |
-
|
727 |
-
|
728 |
-
|
729 |
-
|
730 |
-
|
731 |
-
|
732 |
-
|
733 |
-
|
734 |
-
|
735 |
-
|
736 |
-
|
737 |
-
|
738 |
-
|
739 |
-
|
740 |
-
|
741 |
-
|
742 |
-
|
743 |
-
|
744 |
-
|
745 |
-
|
746 |
-
|
747 |
-
|
748 |
-
|
749 |
-
|
750 |
-
|
751 |
-
|
752 |
-
|
|
|
|
|
|
|
753 |
|
754 |
# Train-Test Split
|
755 |
st.subheader("✂️ Train-Test Split")
|
@@ -819,39 +843,69 @@ elif app_mode == "Model Training":
|
|
819 |
else:
|
820 |
model = SVC()
|
821 |
elif model_name == "Neural Network":
|
822 |
-
|
823 |
-
|
824 |
-
|
825 |
-
|
826 |
-
|
827 |
-
|
828 |
-
|
829 |
-
|
830 |
-
|
831 |
-
|
832 |
-
|
833 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
834 |
elif model_name == "KNN":
|
|
|
835 |
model = KNeighborsClassifier()
|
836 |
elif model_name == "Naive Bayes":
|
|
|
837 |
model = GaussianNB()
|
838 |
|
839 |
# Train the model
|
840 |
-
|
|
|
|
|
|
|
|
|
|
|
841 |
|
|
|
|
|
842 |
# Store model and preprocessor
|
843 |
st.session_state.model = Pipeline(steps=[('preprocessor', preprocessor), ('model', model)])
|
844 |
st.session_state.preprocessor = preprocessor
|
845 |
|
846 |
-
# Store the test data
|
847 |
st.session_state.X_train_selected = X_train_processed
|
848 |
st.session_state.X_test_selected = X_test_processed
|
849 |
st.session_state.y_train = y_train
|
850 |
st.session_state.y_test = y_test
|
851 |
|
852 |
# Model Evaluation
|
853 |
-
y_pred = model.predict(X_test_processed)
|
854 |
if problem_type == "Regression":
|
|
|
855 |
mse = mean_squared_error(y_test, y_pred)
|
856 |
rmse = np.sqrt(mse)
|
857 |
mae = mean_absolute_error(y_test, y_pred)
|
@@ -860,7 +914,11 @@ elif app_mode == "Model Training":
|
|
860 |
st.write(f"Root Mean Squared Error: {rmse:.4f}")
|
861 |
st.write(f"Mean Absolute Error: {mae:.4f}")
|
862 |
st.write(f"R-squared: {r2:.4f}")
|
863 |
-
else:
|
|
|
|
|
|
|
|
|
864 |
accuracy = accuracy_score(y_test, y_pred)
|
865 |
precision = precision_score(y_test, y_pred, average='weighted', zero_division=0)
|
866 |
recall = recall_score(y_test, y_pred, average='weighted', zero_division=0)
|
@@ -871,6 +929,10 @@ elif app_mode == "Model Training":
|
|
871 |
st.write(f"F1 Score: {f1:.4f}")
|
872 |
st.write("Classification Report:")
|
873 |
st.text(classification_report(y_test, y_pred))
|
|
|
|
|
|
|
|
|
874 |
|
875 |
# Visualization
|
876 |
st.subheader("📊 Model Performance Visualization")
|
@@ -882,7 +944,33 @@ elif app_mode == "Model Training":
|
|
882 |
ax.set_ylabel('Predicted')
|
883 |
ax.set_title('Actual vs Predicted')
|
884 |
st.pyplot(fig)
|
885 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
886 |
conf_matrix = confusion_matrix(y_test, y_pred)
|
887 |
fig, ax = plt.subplots()
|
888 |
sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues', ax=ax)
|
@@ -890,7 +978,6 @@ elif app_mode == "Model Training":
|
|
890 |
ax.set_ylabel('True Labels')
|
891 |
ax.set_title('Confusion Matrix')
|
892 |
st.pyplot(fig)
|
893 |
-
|
894 |
st.success("Model trained successfully!")
|
895 |
except Exception as e:
|
896 |
st.error(f"An error occurred during training: {e}")
|
@@ -908,180 +995,6 @@ elif app_mode == "Model Training":
|
|
908 |
st.warning("No trained model available. Train a model first to enable saving.")
|
909 |
|
910 |
|
911 |
-
# Visualization Lab Section
|
912 |
-
elif app_mode == "Visualization Lab":
|
913 |
-
st.title("🔬 Visualization Lab")
|
914 |
-
st.markdown("""
|
915 |
-
**Explore and Visualize Your Data** with advanced plotting tools and interactive visualizations.
|
916 |
-
Uncover hidden patterns and relationships in your data.
|
917 |
-
""")
|
918 |
-
|
919 |
-
if 'cleaned_data' not in st.session_state or st.session_state.cleaned_data is None:
|
920 |
-
st.warning("Please clean your data in the Smart Cleaning section first.")
|
921 |
-
st.stop()
|
922 |
-
|
923 |
-
df = st.session_state.cleaned_data.copy()
|
924 |
-
|
925 |
-
# Visualization Type Selection
|
926 |
-
st.subheader("📊 Choose Visualization Type")
|
927 |
-
plot_types = [
|
928 |
-
"Histogram", "Scatter Plot", "Box Plot", "Violin Plot",
|
929 |
-
"Correlation Heatmap", "Parallel Coordinates", "Andrews Curves",
|
930 |
-
"Pair Plot", "Density Contour", "3D Scatter", "Time Series",
|
931 |
-
"Sunburst Chart", "Funnel Chart", "Clustering Analysis"
|
932 |
-
]
|
933 |
-
plot_type = st.selectbox("Select Visualization Type", plot_types)
|
934 |
-
|
935 |
-
# Dynamic Controls Based on Plot Type
|
936 |
-
if plot_type != "Correlation Heatmap":
|
937 |
-
x_col = st.selectbox("X Axis", df.columns)
|
938 |
-
|
939 |
-
if plot_type in ["Scatter Plot", "Box Plot", "Violin Plot", "Time Series", "3D Scatter", "Histogram"]:
|
940 |
-
y_col = st.selectbox("Y Axis", df.columns)
|
941 |
-
|
942 |
-
if plot_type == "3D Scatter":
|
943 |
-
z_col = st.selectbox("Z Axis", df.columns)
|
944 |
-
color_col = st.selectbox("Color by", [None] + list(df.columns))
|
945 |
-
|
946 |
-
# Advanced Plot Customization
|
947 |
-
with st.expander("🎨 Advanced Customization", expanded=False):
|
948 |
-
color_palette = st.selectbox("Color Palette", ["Viridis", "Plasma", "Magma", "Cividis", "RdBu", "Rainbow"])
|
949 |
-
hover_data_cols = st.multiselect("Hover Data", df.columns)
|
950 |
-
|
951 |
-
# Plot Generation
|
952 |
-
try:
|
953 |
-
fig = None
|
954 |
-
|
955 |
-
if plot_type == "Histogram":
|
956 |
-
fig = px.histogram(
|
957 |
-
df, x=x_col, y=y_col,
|
958 |
-
nbins=30, template="plotly_dark",
|
959 |
-
color_discrete_sequence=[color_palette]
|
960 |
-
)
|
961 |
-
|
962 |
-
elif plot_type == "Scatter Plot":
|
963 |
-
fig = px.scatter(
|
964 |
-
df, x=x_col, y=y_col,
|
965 |
-
color=color_col,
|
966 |
-
size=hover_data_cols,
|
967 |
-
hover_data=hover_data_cols
|
968 |
-
)
|
969 |
-
|
970 |
-
elif plot_type == "3D Scatter":
|
971 |
-
fig = px.scatter_3d(
|
972 |
-
df, x=x_col, y=y_col, z=z_col,
|
973 |
-
color=color_col,
|
974 |
-
color_discrete_sequence=[color_palette]
|
975 |
-
)
|
976 |
-
|
977 |
-
elif plot_type == "Correlation Heatmap":
|
978 |
-
numeric_df = df.select_dtypes(include=np.number)
|
979 |
-
if not numeric_df.empty:
|
980 |
-
corr = numeric_df.corr()
|
981 |
-
fig = px.imshow(
|
982 |
-
corr, text_auto=True,
|
983 |
-
color_continuous_scale=color_palette
|
984 |
-
)
|
985 |
-
else:
|
986 |
-
st.warning("No numerical columns found for correlation heatmap.")
|
987 |
-
|
988 |
-
elif plot_type == "Box Plot":
|
989 |
-
fig = px.box(
|
990 |
-
df, x=x_col, y=y_col,
|
991 |
-
color=color_col
|
992 |
-
)
|
993 |
-
|
994 |
-
elif plot_type == "Violin Plot":
|
995 |
-
fig = px.violin(
|
996 |
-
df, x=x_col, y=y_col,
|
997 |
-
box=True, points="all",
|
998 |
-
color=color_col
|
999 |
-
)
|
1000 |
-
|
1001 |
-
elif plot_type == "Time Series":
|
1002 |
-
df = df.sort_values(by=x_col)
|
1003 |
-
fig = px.line(
|
1004 |
-
df, x=x_col, y=y_col,
|
1005 |
-
color=color_col
|
1006 |
-
)
|
1007 |
-
|
1008 |
-
elif plot_type == "Scatter Matrix":
|
1009 |
-
fig = px.scatter_matrix(
|
1010 |
-
df, dimensions=[x_col, y_col],
|
1011 |
-
color=color_col
|
1012 |
-
)
|
1013 |
-
|
1014 |
-
if fig:
|
1015 |
-
st.plotly_chart(fig, use_container_width=True)
|
1016 |
-
except Exception as e:
|
1017 |
-
st.error(f"An error occurred while generating the plot: {e}")
|
1018 |
-
|
1019 |
-
# Statistical Analysis Section
|
1020 |
-
with st.expander("📊 Statistical Analysis", expanded=True):
|
1021 |
-
analysis_type = st.selectbox("Select Analysis Type", [
|
1022 |
-
"Descriptive Statistics",
|
1023 |
-
"Correlation Analysis",
|
1024 |
-
"Hypothesis Testing",
|
1025 |
-
"Distribution Fitting"
|
1026 |
-
])
|
1027 |
-
|
1028 |
-
if analysis_type == "Descriptive Statistics":
|
1029 |
-
st.write(df.describe(include='all'))
|
1030 |
-
|
1031 |
-
elif analysis_type == "Correlation Analysis":
|
1032 |
-
numeric_cols = df.select_dtypes(include=np.number).columns
|
1033 |
-
if len(numeric_cols) >= 2:
|
1034 |
-
corr_method = st.selectbox("Correlation Method", [
|
1035 |
-
"Pearson", "Kendall", "Spearman"
|
1036 |
-
])
|
1037 |
-
corr_matrix = df[numeric_cols].corr(method=corr_method.lower())
|
1038 |
-
st.write(corr_matrix)
|
1039 |
-
st.heatmap(corr_matrix, annot=True, cmap=color_palette)
|
1040 |
-
else:
|
1041 |
-
st.warning("Need at least 2 numeric columns for correlation analysis")
|
1042 |
-
|
1043 |
-
elif analysis_type == "Hypothesis Testing":
|
1044 |
-
test_type = st.selectbox("Select Test Type", [
|
1045 |
-
"T-test", "Chi-Squared Test", "ANOVA", "Mann-Whitney U"
|
1046 |
-
])
|
1047 |
-
if test_type == "T-test":
|
1048 |
-
col1 = st.selectbox("Column 1 (Numeric)", df.select_dtypes(include=np.number).columns)
|
1049 |
-
col2 = st.selectbox("Column 2 (Categorical)", df.select_dtypes(include='object').columns)
|
1050 |
-
if st.button("Run T-test"):
|
1051 |
-
groups = df.groupby(col2)[col1].apply(list)
|
1052 |
-
if len(groups) == 2:
|
1053 |
-
t_stat, p_value = stats.ttest_ind(groups.iloc[0], groups.iloc[1])
|
1054 |
-
st.write(f"T-statistic: {t_stat:.4f}")
|
1055 |
-
st.write(f"P-value: {p_value:.4f}")
|
1056 |
-
if p_value < 0.05:
|
1057 |
-
st.write("Reject the null hypothesis.")
|
1058 |
-
else:
|
1059 |
-
st.write("Fail to reject the null hypothesis.")
|
1060 |
-
else:
|
1061 |
-
st.write("Select a categorical column with exactly two categories.")
|
1062 |
-
|
1063 |
-
elif analysis_type == "Distribution Fitting":
|
1064 |
-
numeric_col = st.selectbox("Select Numeric Column", df.select_dtypes(include=np.number).columns)
|
1065 |
-
dist_types = ["Normal", "Log-Normal", "Exponential", "Gamma"]
|
1066 |
-
selected_dist = st.selectbox("Select Distribution Type", dist_types)
|
1067 |
-
if st.button("Fit Distribution"):
|
1068 |
-
from scipy.stats import norm, lognorm, expon, gamma
|
1069 |
-
dist_functions = {
|
1070 |
-
"Normal": norm,
|
1071 |
-
"Log-Normal": lognorm,
|
1072 |
-
"Exponential": expon,
|
1073 |
-
"Gamma": gamma
|
1074 |
-
}
|
1075 |
-
params = dist_functions[selected_dist].fit(df[numeric_col].dropna())
|
1076 |
-
st.write(f"Fitted Parameters: {params}")
|
1077 |
-
|
1078 |
-
# Data Profiling Section
|
1079 |
-
with st.expander("📝 Generate Full Data Profile", expanded=False):
|
1080 |
-
if st.button("🚀 Generate Comprehensive Report"):
|
1081 |
-
with st.spinner("Generating report..."):
|
1082 |
-
pr = ProfileReport(df, explorative=True)
|
1083 |
-
st_profile_report(pr)
|
1084 |
-
|
1085 |
# Insights Section
|
1086 |
elif app_mode == "Insights":
|
1087 |
st.title("📊 Model Insights & Explainability")
|
@@ -1112,7 +1025,7 @@ elif app_mode == "Insights":
|
|
1112 |
'Feature': feature_names,
|
1113 |
'Importance': importances
|
1114 |
}).sort_values('Importance', ascending=False)
|
1115 |
-
|
1116 |
fig, ax = plt.subplots()
|
1117 |
sns.barplot(x='Importance', y='Feature', data=importance_df.head(10), ax=ax)
|
1118 |
ax.set_title('Top 10 Feature Importances')
|
@@ -1125,22 +1038,44 @@ elif app_mode == "Insights":
|
|
1125 |
if st.checkbox("Calculate SHAP Values (Warning: May be slow for large datasets)"):
|
1126 |
try:
|
1127 |
import shap
|
1128 |
-
explainer = shap.TreeExplainer(model)
|
1129 |
-
shap_values = explainer.shap_values(st.session_state.X_test_selected)
|
1130 |
-
|
1131 |
-
# Summary Plot
|
1132 |
-
st.write("### Summary Plot")
|
1133 |
-
fig, ax = plt.subplots()
|
1134 |
-
shap.summary_plot(shap_values, st.session_state.X_test_selected, feature_names=preprocessor.get_feature_names_out())
|
1135 |
-
st.pyplot(fig)
|
1136 |
|
1137 |
-
#
|
1138 |
-
|
1139 |
-
|
1140 |
-
|
1141 |
-
|
1142 |
-
|
1143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1144 |
except Exception as e:
|
1145 |
st.error(f"SHAP calculation failed: {e}")
|
1146 |
|
@@ -1152,8 +1087,8 @@ elif app_mode == "Insights":
|
|
1152 |
from sklearn.inspection import PartialDependenceDisplay
|
1153 |
fig, ax = plt.subplots()
|
1154 |
PartialDependenceDisplay.from_estimator(
|
1155 |
-
model, st.session_state.X_test_selected,
|
1156 |
-
features=[feature_to_plot],
|
1157 |
feature_names=preprocessor.get_feature_names_out(),
|
1158 |
ax=ax
|
1159 |
)
|
@@ -1167,14 +1102,14 @@ elif app_mode == "Insights":
|
|
1167 |
'metric': [],
|
1168 |
'value': []
|
1169 |
}
|
1170 |
-
|
1171 |
if hasattr(model, 'predict'):
|
1172 |
y_pred = model.predict(st.session_state.X_test_selected)
|
1173 |
mse = mean_squared_error(st.session_state.y_test, y_pred)
|
1174 |
performance_history['timestamp'].append(datetime.now())
|
1175 |
performance_history['metric'].append('MSE')
|
1176 |
performance_history['value'].append(mse)
|
1177 |
-
|
1178 |
performance_df = pd.DataFrame(performance_history)
|
1179 |
st.line_chart(performance_df.set_index('timestamp'))
|
1180 |
|
@@ -1203,7 +1138,6 @@ elif app_mode == "Insights":
|
|
1203 |
st.success("Insights exported successfully!")
|
1204 |
except Exception as e:
|
1205 |
st.error(f"Export failed: {e}")
|
1206 |
-
|
1207 |
|
1208 |
# Predictions Section
|
1209 |
elif app_mode == "Predictions":
|
@@ -1236,9 +1170,9 @@ elif app_mode == "Predictions":
|
|
1236 |
input_df = pd.DataFrame([input_data])
|
1237 |
input_processed = preprocessor.transform(input_df)
|
1238 |
prediction = model.predict(input_processed)[0]
|
1239 |
-
|
1240 |
st.write(f"**Prediction:** {prediction}")
|
1241 |
-
|
1242 |
if hasattr(model, 'predict_proba'):
|
1243 |
probabilities = model.predict_proba(input_processed)[0]
|
1244 |
st.write("**Prediction Probabilities:**")
|
@@ -1248,14 +1182,20 @@ elif app_mode == "Predictions":
|
|
1248 |
if st.checkbox("Show SHAP Explanation"):
|
1249 |
try:
|
1250 |
import shap
|
1251 |
-
|
1252 |
-
|
1253 |
-
|
|
|
|
|
|
|
|
|
|
|
1254 |
st.write("### SHAP Values")
|
1255 |
fig, ax = plt.subplots()
|
1256 |
-
shap.force_plot(explainer.expected_value, shap_values, input_processed,
|
1257 |
feature_names=feature_names, matplotlib=True, show=False)
|
1258 |
st.pyplot(fig)
|
|
|
1259 |
except Exception as e:
|
1260 |
st.error(f"SHAP calculation failed: {e}")
|
1261 |
|
@@ -1328,243 +1268,5 @@ elif app_mode == "Predictions":
|
|
1328 |
pdf.cell(200, 10, txt=f"Problem Type: {'Regression' if hasattr(model, 'predict') else 'Classification'}", ln=True)
|
1329 |
pdf.output("predictions_report.pdf")
|
1330 |
st.success("Predictions exported successfully!")
|
1331 |
-
|
1332 |
-
|
1333 |
-
|
1334 |
-
# Neural Network Studio Section
|
1335 |
-
elif app_mode == "Neural Network Studio":
|
1336 |
-
st.title("🧠 Neural Network Studio")
|
1337 |
-
st.markdown("""
|
1338 |
-
**Build and Train Neural Networks** with advanced configurations and visualizations.
|
1339 |
-
Explore deep learning models with ease.
|
1340 |
-
""")
|
1341 |
-
|
1342 |
-
if 'cleaned_data' not in st.session_state or st.session_state.cleaned_data is None:
|
1343 |
-
st.warning("Please clean your data in the Smart Cleaning section first.")
|
1344 |
-
st.stop()
|
1345 |
-
|
1346 |
-
df = st.session_state.cleaned_data.copy()
|
1347 |
-
|
1348 |
-
# Target Variable Selection
|
1349 |
-
st.subheader("🎯 Target Variable")
|
1350 |
-
target_column = st.selectbox("Select Target Variable", df.columns, help="Choose the column to predict.")
|
1351 |
-
|
1352 |
-
# Problem Type Selection
|
1353 |
-
st.subheader("📝 Problem Type")
|
1354 |
-
problem_type = st.radio("Select Problem Type", ["Regression", "Classification"], help="Choose the type of machine learning problem.")
|
1355 |
-
|
1356 |
-
# Feature Selection
|
1357 |
-
st.subheader("🔧 Feature Selection")
|
1358 |
-
use_all_features = st.checkbox("Use All Features", value=True, help="Select to use all features for training. Deselect to manually choose features.")
|
1359 |
-
if use_all_features:
|
1360 |
-
feature_columns = df.drop(columns=[target_column]).columns.tolist()
|
1361 |
-
else:
|
1362 |
-
feature_columns = st.multiselect("Select Feature Columns", df.drop(columns=[target_column]).columns, help="Choose the features you want to use for prediction.")
|
1363 |
-
|
1364 |
-
# Neural Network Configuration
|
1365 |
-
st.subheader("⚙️ Neural Network Configuration")
|
1366 |
-
with st.expander("Configure Neural Network", expanded=True):
|
1367 |
-
col1, col2 = st.columns(2)
|
1368 |
-
with col1:
|
1369 |
-
hidden_layers = st.slider("Number of Hidden Layers", 1, 5, 2)
|
1370 |
-
neurons_per_layer = st.slider("Neurons per Layer", 10, 200, 50)
|
1371 |
-
activation = st.selectbox("Activation Function",
|
1372 |
-
["relu", "tanh", "sigmoid", "selu", "swish"])
|
1373 |
-
dropout_rate = st.slider("Dropout Rate", 0.0, 0.5, 0.2)
|
1374 |
-
initializer = st.selectbox("Weight Initializer",
|
1375 |
-
["glorot_uniform", "he_normal", "lecun_uniform"])
|
1376 |
-
|
1377 |
-
with col2:
|
1378 |
-
learning_rate = st.slider("Learning Rate", 0.0001, 0.1, 0.001, format="%.4f")
|
1379 |
-
optimizer_choice = st.selectbox("Optimizer",
|
1380 |
-
["Adam", "Nadam", "RMSprop", "SGD"])
|
1381 |
-
batch_norm = st.checkbox("Batch Normalization", value=True)
|
1382 |
-
regularization = st.checkbox("L2 Regularization")
|
1383 |
-
epochs = st.slider("Epochs", 10, 200, 50)
|
1384 |
-
batch_size = st.slider("Batch Size", 16, 128, 32)
|
1385 |
-
|
1386 |
-
# Train-Test Split
|
1387 |
-
st.subheader("✂️ Train-Test Split")
|
1388 |
-
test_size = st.slider("Test Size", 0.1, 0.5, 0.2, help="Proportion of the dataset to include in the test split.")
|
1389 |
-
|
1390 |
-
# Model Training
|
1391 |
-
if st.button("🚀 Train Neural Network"):
|
1392 |
-
with st.spinner("Training neural network..."):
|
1393 |
-
try:
|
1394 |
-
X = df[feature_columns]
|
1395 |
-
y = df[target_column]
|
1396 |
-
|
1397 |
-
# Train-Test Split
|
1398 |
-
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random_state=42)
|
1399 |
-
|
1400 |
-
# Preprocessing Pipeline
|
1401 |
-
numeric_features = X.select_dtypes(include=np.number).columns
|
1402 |
-
categorical_features = X.select_dtypes(exclude=np.number).columns
|
1403 |
-
|
1404 |
-
numeric_transformer = Pipeline(steps=[
|
1405 |
-
('imputer', SimpleImputer(strategy='median')),
|
1406 |
-
('scaler', StandardScaler())
|
1407 |
-
])
|
1408 |
-
|
1409 |
-
categorical_transformer = Pipeline(steps=[
|
1410 |
-
('imputer', SimpleImputer(strategy='most_frequent')),
|
1411 |
-
('onehot', OneHotEncoder(handle_unknown='ignore'))
|
1412 |
-
])
|
1413 |
-
|
1414 |
-
preprocessor = ColumnTransformer(
|
1415 |
-
transformers=[
|
1416 |
-
('num', numeric_transformer, numeric_features),
|
1417 |
-
('cat', categorical_transformer, categorical_features)
|
1418 |
-
])
|
1419 |
-
|
1420 |
-
X_train_processed = preprocessor.fit_transform(X_train)
|
1421 |
-
X_test_processed = preprocessor.transform(X_test)
|
1422 |
-
|
1423 |
-
# Build neural network with advanced features
|
1424 |
-
model = keras.Sequential()
|
1425 |
-
model.add(layers.Input(shape=(X_train_processed.shape[1],)))
|
1426 |
-
|
1427 |
-
for _ in range(hidden_layers):
|
1428 |
-
# Create configurable layers
|
1429 |
-
layer_config = {
|
1430 |
-
'units': neurons_per_layer,
|
1431 |
-
'activation': activation,
|
1432 |
-
'kernel_initializer': initializer
|
1433 |
-
}
|
1434 |
-
|
1435 |
-
if regularization:
|
1436 |
-
layer_config['kernel_regularizer'] = keras.regularizers.l2(0.01)
|
1437 |
-
|
1438 |
-
model.add(layers.Dense(**layer_config))
|
1439 |
-
|
1440 |
-
if batch_norm:
|
1441 |
-
model.add(layers.BatchNormalization())
|
1442 |
-
|
1443 |
-
if dropout_rate > 0:
|
1444 |
-
model.add(layers.Dropout(dropout_rate))
|
1445 |
-
|
1446 |
-
# Output layer
|
1447 |
-
output_activation = 'linear' if problem_type == "Regression" else 'softmax'
|
1448 |
-
output_units = 1 if problem_type == "Regression" else len(np.unique(y_train))
|
1449 |
-
model.add(layers.Dense(output_units, activation=output_activation))
|
1450 |
-
|
1451 |
-
# Configure optimizer
|
1452 |
-
optimizers = {
|
1453 |
-
"Adam": keras.optimizers.Adam(learning_rate=learning_rate),
|
1454 |
-
"Nadam": keras.optimizers.Nadam(learning_rate=learning_rate),
|
1455 |
-
"RMSprop": keras.optimizers.RMSprop(learning_rate=learning_rate),
|
1456 |
-
"SGD": keras.optimizers.SGD(learning_rate=learning_rate, momentum=0.9)
|
1457 |
-
}
|
1458 |
-
|
1459 |
-
optimizer = optimizers[optimizer_choice]
|
1460 |
-
|
1461 |
-
# Compile the model
|
1462 |
-
model.compile(optimizer=optimizer,
|
1463 |
-
loss='mse' if problem_type == "Regression" else 'sparse_categorical_crossentropy',
|
1464 |
-
metrics=['mae'] if problem_type == "Regression" else ['accuracy'])
|
1465 |
-
|
1466 |
-
# Add callbacks section
|
1467 |
-
with st.expander("Advanced Training Options"):
|
1468 |
-
early_stopping = st.checkbox("Early Stopping", value=True)
|
1469 |
-
reduce_lr = st.checkbox("Reduce Learning Rate on Plateau")
|
1470 |
-
patience = st.slider("Patience Epochs", 5, 20, 10) if early_stopping else 0
|
1471 |
-
|
1472 |
-
callbacks_list = []
|
1473 |
-
if early_stopping:
|
1474 |
-
callbacks_list.append(
|
1475 |
-
callbacks.EarlyStopping(patience=patience, restore_best_weights=True))
|
1476 |
-
if reduce_lr:
|
1477 |
-
callbacks_list.append(
|
1478 |
-
callbacks.ReduceLROnPlateau(factor=0.2, patience=patience//2))
|
1479 |
-
|
1480 |
-
# Train the model with callbacks
|
1481 |
-
history = model.fit(
|
1482 |
-
X_train_processed, y_train,
|
1483 |
-
epochs=epochs,
|
1484 |
-
batch_size=batch_size,
|
1485 |
-
validation_split=0.2,
|
1486 |
-
callbacks=callbacks_list,
|
1487 |
-
verbose=0
|
1488 |
-
)
|
1489 |
-
|
1490 |
-
# Store model and preprocessor
|
1491 |
-
st.session_state.model = Pipeline(steps=[('preprocessor', preprocessor), ('model', model)])
|
1492 |
-
st.session_state.preprocessor = preprocessor
|
1493 |
-
|
1494 |
-
# Store the test data
|
1495 |
-
st.session_state.X_train_selected = X_train_processed
|
1496 |
-
st.session_state.X_test_selected = X_test_processed
|
1497 |
-
st.session_state.y_train = y_train
|
1498 |
-
st.session_state.y_test = y_test
|
1499 |
-
|
1500 |
-
# Model Evaluation
|
1501 |
-
y_pred = model.predict(X_test_processed)
|
1502 |
-
|
1503 |
-
# Post-processing for classification
|
1504 |
-
if problem_type == "Classification":
|
1505 |
-
y_pred = np.argmax(y_pred, axis=1) # Convert probabilities to class labels
|
1506 |
-
|
1507 |
-
if problem_type == "Regression":
|
1508 |
-
mse = mean_squared_error(y_test, y_pred)
|
1509 |
-
rmse = np.sqrt(mse)
|
1510 |
-
mae = mean_absolute_error(y_test, y_pred)
|
1511 |
-
r2 = r2_score(y_test, y_pred)
|
1512 |
-
st.write(f"Mean Squared Error: {mse:.4f}")
|
1513 |
-
st.write(f"Root Mean Squared Error: {rmse:.4f}")
|
1514 |
-
st.write(f"Mean Absolute Error: {mae:.4f}")
|
1515 |
-
st.write(f"R-squared: {r2:.4f}")
|
1516 |
-
else:
|
1517 |
-
accuracy = accuracy_score(y_test, y_pred)
|
1518 |
-
precision = precision_score(y_test, y_pred, average='weighted', zero_division=0)
|
1519 |
-
recall = recall_score(y_test, y_pred, average='weighted', zero_division=0)
|
1520 |
-
f1 = f1_score(y_test, y_pred, average='weighted', zero_division=0)
|
1521 |
-
st.write(f"Accuracy: {accuracy:.4f}")
|
1522 |
-
st.write(f"Precision: {precision:.4f}")
|
1523 |
-
st.write(f"Recall: {recall:.4f}")
|
1524 |
-
st.write(f"F1 Score: {f1:.4f}")
|
1525 |
-
st.write("Classification Report:")
|
1526 |
-
st.text(classification_report(y_test, y_pred))
|
1527 |
-
|
1528 |
-
# Visualization with multiple metrics
|
1529 |
-
st.subheader("📊 Training History")
|
1530 |
-
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 4))
|
1531 |
-
|
1532 |
-
# Plot loss
|
1533 |
-
ax1.plot(history.history['loss'], label='Train Loss')
|
1534 |
-
ax1.plot(history.history['val_loss'], label='Validation Loss')
|
1535 |
-
ax1.set_title('Loss Evolution')
|
1536 |
-
ax1.set_xlabel('Epoch')
|
1537 |
-
ax1.set_ylabel('Loss')
|
1538 |
-
ax1.legend()
|
1539 |
-
|
1540 |
-
# Plot accuracy/metric
|
1541 |
-
if problem_type == "Classification":
|
1542 |
-
ax2.plot(history.history['accuracy'], label='Train Accuracy')
|
1543 |
-
ax2.plot(history.history['val_accuracy'], label='Validation Accuracy')
|
1544 |
-
ax2.set_title('Accuracy Evolution')
|
1545 |
-
ax2.set_ylabel('Accuracy')
|
1546 |
-
else:
|
1547 |
-
ax2.plot(history.history['mae'], label='Train MAE')
|
1548 |
-
ax2.plot(history.history['val_mae'], label='Validation MAE')
|
1549 |
-
ax2.set_title('MAE Evolution')
|
1550 |
-
ax2.set_ylabel('MAE')
|
1551 |
-
|
1552 |
-
ax2.set_xlabel('Epoch')
|
1553 |
-
ax2.legend()
|
1554 |
-
st.pyplot(fig)
|
1555 |
-
|
1556 |
-
st.success("Neural network trained successfully!")
|
1557 |
-
except Exception as e:
|
1558 |
-
st.error(f"An error occurred during training: {e}")
|
1559 |
-
|
1560 |
-
# Model Saving
|
1561 |
-
if st.session_state.model is not None:
|
1562 |
-
st.subheader("💾 Save Model")
|
1563 |
-
model_filename = st.text_input("Enter Model Filename (without extension)", "neural_network")
|
1564 |
-
if st.button("Save Model"):
|
1565 |
-
try:
|
1566 |
-
# Save the entire Keras model including architecture and weights
|
1567 |
-
st.session_state.model.named_steps['model'].save(f"{model_filename}.h5") # Saves as a HDF5 file
|
1568 |
-
st.success(f"Model saved as {model_filename}.h5")
|
1569 |
-
except Exception as e:
|
1570 |
-
st.error(f"Error saving model: {e}")
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
import pandas as pd
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import seaborn as sns
|
6 |
+
import io
|
7 |
+
import os
|
8 |
+
from tensorflow.keras.models import Sequential
|
9 |
+
from tensorflow.keras.layers import Dense, Dropout
|
10 |
+
from sklearn.preprocessing import StandardScaler, LabelEncoder
|
11 |
+
from sklearn.model_selection import train_test_split
|
12 |
+
import re
|
13 |
+
# Pydantic is now in pydantic-settings, fixed
|
14 |
+
from pydantic_settings import BaseSettings # Fix: import from pydantic_settings
|
15 |
+
# pandas_profiling import and fix
|
16 |
+
from ydata_profiling import ProfileReport
|
17 |
+
from streamlit_pandas_profiling import st_profile_report
|
18 |
+
|
19 |
+
import streamlit as st
|
20 |
import numpy as np
|
21 |
+
import pandas as pd
|
22 |
import plotly.express as px
|
23 |
from scipy import stats
|
24 |
import plotly.colors as pc
|
|
|
45 |
from sklearn.feature_selection import SelectKBest
|
46 |
from sklearn.experimental import enable_iterative_imputer
|
47 |
from sklearn.impute import IterativeImputer
|
48 |
+
from sklearn.neural_network import MLPRegressor, MLPClassifier
|
49 |
+
from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error, accuracy_score, precision_score, recall_score, f1_score, confusion_matrix, classification_report
|
50 |
from sklearn.impute import KNNImputer, SimpleImputer
|
51 |
from sklearn.preprocessing import RobustScaler, StandardScaler, OneHotEncoder, LabelEncoder
|
52 |
from sklearn.compose import ColumnTransformer
|
53 |
from sklearn.pipeline import Pipeline
|
|
|
|
|
|
|
54 |
|
55 |
+
from datetime import datetime # Import datetime
|
56 |
|
57 |
|
58 |
# Enhanced configuration
|
|
|
67 |
st.session_state.raw_data = None
|
68 |
if 'cleaned_data' not in st.session_state:
|
69 |
st.session_state.cleaned_data = None
|
70 |
+
|
71 |
+
if 'model' not in st.session_state:
|
72 |
+
st.session_state.model = None
|
73 |
+
if 'preprocessor' not in st.session_state:
|
74 |
+
st.session_state.preprocessor = None
|
75 |
+
|
76 |
# Security: Set allowed file types
|
77 |
ALLOWED_EXTENSIONS = {'csv', 'xlsx', 'parquet', 'feather'}
|
78 |
MAX_FILE_SIZE_MB = 250 # 250MB limit
|
|
|
81 |
"""Comprehensive file validation"""
|
82 |
if not file:
|
83 |
return False, "No file uploaded"
|
84 |
+
|
85 |
extension = file.name.split('.')[-1].lower()
|
86 |
if extension not in ALLOWED_EXTENSIONS:
|
87 |
return False, f"Unsupported file type: {extension}"
|
88 |
+
|
89 |
file_size_mb = file.size / (1024 * 1024)
|
90 |
if file_size_mb > MAX_FILE_SIZE_MB:
|
91 |
return False, f"File size exceeds {MAX_FILE_SIZE_MB}MB limit"
|
92 |
+
|
93 |
return True, ""
|
94 |
|
95 |
@st.cache_data(ttl=3600, show_spinner="Analyzing data quality...")
|
|
|
185 |
df = pd.read_parquet(uploaded_file)
|
186 |
elif uploaded_file.name.endswith('.feather'):
|
187 |
df = pd.read_feather(uploaded_file)
|
188 |
+
|
189 |
st.session_state.raw_data = df
|
190 |
st.success("Dataset loaded successfully!")
|
191 |
+
|
192 |
except Exception as e:
|
193 |
st.error(f"Error loading file: {str(e)}")
|
194 |
st.stop()
|
|
|
202 |
# Data Health Dashboard
|
203 |
st.subheader("📊 Data Health Dashboard")
|
204 |
report = enhanced_quality_report(df)
|
205 |
+
|
206 |
col1, col2, col3, col4 = st.columns(4)
|
207 |
col1.metric("Total Rows", report['basic_stats']['rows'])
|
208 |
col2.metric("Total Columns", report['basic_stats']['columns'])
|
|
|
213 |
with st.expander("🔍 Deep Column Analysis", expanded=True):
|
214 |
selected_col = st.selectbox("Select column to inspect", df.columns)
|
215 |
col_info = report['column_analysis'][selected_col]
|
216 |
+
|
217 |
st.write(f"**Type:** {col_info['type']}")
|
218 |
st.write(f"**Unique Values:** {col_info['unique']}")
|
219 |
st.write(f"**Missing Values:** {col_info['missing']} ({col_info['missing']/len(df):.1%})")
|
220 |
+
|
221 |
if pd.api.types.is_numeric_dtype(df[selected_col]):
|
222 |
st.write("**Distribution:**")
|
223 |
st.line_chart(df[selected_col])
|
|
|
239 |
recommendations.append(f"⚠️ Consider dropping {col} (>{50}% missing)")
|
240 |
if data['unique'] == len(df):
|
241 |
recommendations.append(f"🔍 Investigate {col} - potential unique identifier")
|
242 |
+
|
243 |
if recommendations:
|
244 |
st.write("### Recommended Actions")
|
245 |
for rec in recommendations[:5]: # Show top 5
|
|
|
255 |
# Advanced Profiling
|
256 |
if st.button("🚀 Generate Full Data Profile"):
|
257 |
with st.spinner("Generating comprehensive report..."):
|
258 |
+
pr = ProfileReport(df, explorative=True,title="Data Upload Report") # Added title to pandas profiling
|
259 |
st_profile_report(pr)
|
260 |
|
261 |
elif app_mode == "Smart Cleaning":
|
|
|
287 |
st.caption(f"Current Version: {st.session_state.current_version+1}/{len(st.session_state.data_versions)}")
|
288 |
progress = (st.session_state.current_version + 1) / len(st.session_state.data_versions)
|
289 |
st.progress(progress)
|
290 |
+
|
291 |
col1, col2 = st.columns(2)
|
292 |
with col1:
|
293 |
if st.button("⏮️ Undo Last Action", disabled=st.session_state.current_version == 0):
|
|
|
302 |
st.subheader("📊 Data Health Dashboard")
|
303 |
with st.expander("Show Comprehensive Data Report", expanded=True):
|
304 |
from pandas_profiling import ProfileReport
|
305 |
+
pr = ProfileReport(df, title="Smart Cleaning Data Report") # Add title to pandas profiling report
|
306 |
st_profile_report(pr)
|
307 |
|
308 |
# Enhanced Health Summary with Cards
|
|
|
322 |
st.markdown("### 📈 Data Health Visualizations")
|
323 |
col1, col2 = st.columns(2)
|
324 |
with col1:
|
325 |
+
st.plotly_chart(px.bar(df.isna().sum(), title="Missing Values per Column",
|
326 |
+
labels={'index': 'Column', 'value': 'Missing Count'},
|
327 |
color=df.isna().sum(), color_continuous_scale="Bluered"))
|
328 |
with col2:
|
329 |
+
st.plotly_chart(px.pie(values=df.dtypes.value_counts(), names=df.dtypes.value_counts().index,
|
330 |
title="Data Type Distribution", hole=0.3))
|
331 |
|
332 |
# Cleaning Operations with Tabs
|
|
|
340 |
if missing_cols:
|
341 |
st.write("Columns with missing values:")
|
342 |
cols = st.multiselect("Select columns to clean", missing_cols, default=missing_cols)
|
343 |
+
|
344 |
method = st.radio("Imputation Method", [
|
345 |
+
"Drop Missing",
|
346 |
+
"Mean/Median/Mode",
|
347 |
+
"KNN Imputation",
|
348 |
+
"MICE Imputation",
|
349 |
"Deep Learning Imputation"
|
350 |
], horizontal=True)
|
351 |
+
|
352 |
if st.button(f"Apply {method}"):
|
353 |
try:
|
354 |
original_df = df.copy()
|
|
|
369 |
st.plotly_chart(px.histogram(df, x=df.duplicated(), title="Duplicate Distribution"))
|
370 |
dup_strategy = st.radio("Duplicate Strategy", [
|
371 |
"Remove All Duplicates",
|
372 |
+
"Keep First Occurrence",
|
373 |
"Keep Last Occurrence"
|
374 |
])
|
375 |
if st.button("Handle Duplicates"):
|
|
|
394 |
with col2:
|
395 |
col_to_convert = st.selectbox("Select column to convert", df.columns)
|
396 |
new_type = st.selectbox("New Data Type", [
|
397 |
+
"String", "Integer", "Float",
|
398 |
"Boolean", "Datetime", "Category"
|
399 |
])
|
400 |
if st.button("Convert Data Type"):
|
|
|
425 |
if st.button("💾 Save Cleaned Data"):
|
426 |
st.session_state.cleaned_data = df
|
427 |
st.balloons()
|
428 |
+
|
429 |
# Generate comprehensive report
|
430 |
from pandas_profiling import ProfileReport
|
431 |
pr = ProfileReport(df, title="Cleaned Data Report")
|
432 |
st_profile_report(pr)
|
433 |
+
|
434 |
# Show cleaning log with diffs
|
435 |
st.subheader("📝 Cleaning Log")
|
436 |
st.table(pd.DataFrame({
|
437 |
"Step": range(1, len(cleaning_actions)+1),
|
438 |
"Action": cleaning_actions
|
439 |
}))
|
440 |
+
|
441 |
# Show dataset comparison
|
442 |
col1, col2 = st.columns(2)
|
443 |
with col1:
|
444 |
st.write("Original Data Shape:", st.session_state.raw_data.shape)
|
445 |
with col2:
|
446 |
st.write("Cleaned Data Shape:", df.shape)
|
447 |
+
|
448 |
+
st.success("✅ Cleaned data saved successfully! You can now proceed to analysis.")
|
449 |
elif app_mode == "Advanced EDA":
|
450 |
st.title("🔍 Advanced Exploratory Data Analysis")
|
451 |
st.markdown("""
|
|
|
479 |
|
480 |
with col1:
|
481 |
st.header("📊 Visualization Setup")
|
482 |
+
|
483 |
# Plot Type Selection
|
484 |
plot_types = {
|
485 |
"Distribution": ["Histogram", "Box Plot", "Violin Plot", "Density Plot"],
|
|
|
487 |
"Comparison": ["Bar Chart", "Pie Chart", "Parallel Coordinates"],
|
488 |
"3D": ["3D Scatter", "3D Surface"]
|
489 |
}
|
490 |
+
|
491 |
selected_category = st.selectbox("Plot Category", list(plot_types.keys()))
|
492 |
st.session_state.eda_config['plot_type'] = st.selectbox(
|
493 |
"Plot Type",
|
|
|
496 |
|
497 |
# Dynamic Column Selectors
|
498 |
plot_type = st.session_state.eda_config['plot_type']
|
499 |
+
|
500 |
if plot_type in ["Histogram", "Box Plot", "Violin Plot", "Density Plot", "Bar Chart", "Pie Chart"]:
|
501 |
st.session_state.eda_config['x_col'] = st.selectbox(
|
502 |
"X Axis",
|
503 |
df.columns,
|
504 |
+
index=df.columns.get_loc(st.session_state.eda_config['x_col'])
|
505 |
if st.session_state.eda_config['x_col'] in df.columns else 0
|
506 |
)
|
507 |
+
|
508 |
if plot_type in ["Scatter Plot", "Line Plot", "Box Plot", "Violin Plot", "Density Plot"]:
|
509 |
st.session_state.eda_config['y_col'] = st.selectbox(
|
510 |
"Y Axis",
|
511 |
df.columns,
|
512 |
+
index=df.columns.get_loc(st.session_state.eda_config['y_col'])
|
513 |
if st.session_state.eda_config['y_col'] in df.columns else 0
|
514 |
)
|
515 |
+
|
516 |
if plot_type in ["3D Scatter", "3D Surface"]:
|
517 |
st.session_state.eda_config['z_col'] = st.selectbox(
|
518 |
"Z Axis",
|
519 |
df.columns,
|
520 |
+
index=df.columns.get_loc(st.session_state.eda_config['z_col'])
|
521 |
if st.session_state.eda_config['z_col'] in df.columns else 0
|
522 |
)
|
523 |
|
|
|
558 |
with col2:
|
559 |
st.header("📈 Visualization")
|
560 |
config = st.session_state.eda_config
|
561 |
+
|
562 |
@st.cache_data(ttl=300)
|
563 |
def generate_plot(df, plot_type, config):
|
564 |
"""Cached plot generation function for better performance"""
|
565 |
try:
|
566 |
if plot_type == "Histogram":
|
567 |
return px.histogram(
|
568 |
+
df, x=config['x_col'],
|
569 |
color=config['color_col'],
|
570 |
nbins=30,
|
571 |
color_discrete_sequence=[config['color_palette']]
|
572 |
)
|
573 |
+
|
574 |
elif plot_type == "Scatter Plot":
|
575 |
return px.scatter(
|
576 |
df, x=config['x_col'], y=config['y_col'],
|
577 |
color=config['color_col'],
|
578 |
hover_data=config['hover_data_cols']
|
579 |
)
|
580 |
+
|
581 |
elif plot_type == "Box Plot":
|
582 |
return px.box(
|
583 |
df, x=config['x_col'], y=config['y_col'],
|
584 |
color=config['color_col']
|
585 |
)
|
586 |
+
|
587 |
elif plot_type == "Violin Plot":
|
588 |
return px.violin(
|
589 |
df, x=config['x_col'], y=config['y_col'],
|
590 |
color=config['color_col'],
|
591 |
box=True
|
592 |
)
|
593 |
+
|
594 |
elif plot_type == "Heatmap":
|
595 |
numeric_df = df.select_dtypes(include=np.number)
|
596 |
corr = numeric_df.corr()
|
597 |
return px.imshow(
|
598 |
+
corr,
|
599 |
text_auto=True,
|
600 |
color_continuous_scale=config['color_palette']
|
601 |
)
|
602 |
+
|
603 |
elif plot_type == "3D Scatter":
|
604 |
return px.scatter_3d(
|
605 |
df, x=config['x_col'], y=config['y_col'], z=config['z_col'],
|
606 |
color=config['color_col']
|
607 |
)
|
608 |
+
|
609 |
elif plot_type == "Bar Chart":
|
610 |
return px.bar(
|
611 |
df, x=config['x_col'], y=config['y_col'],
|
612 |
color=config['color_col']
|
613 |
)
|
614 |
+
|
615 |
elif plot_type == "Pie Chart":
|
616 |
return px.pie(
|
617 |
df, names=config['x_col'], values=config['y_col'],
|
618 |
color_discrete_sequence=[config['color_palette']]
|
619 |
)
|
620 |
+
|
621 |
elif plot_type == "Line Plot":
|
622 |
return px.line(
|
623 |
df, x=config['x_col'], y=config['y_col'],
|
624 |
color=config['color_col']
|
625 |
)
|
626 |
+
|
627 |
elif plot_type == "Pair Plot":
|
628 |
numeric_cols = df.select_dtypes(include=np.number).columns
|
629 |
return px.scatter_matrix(
|
630 |
df[numeric_cols],
|
631 |
color=config['color_col']
|
632 |
)
|
633 |
+
|
634 |
elif plot_type == "Parallel Coordinates":
|
635 |
numeric_df = df.select_dtypes(include=np.number)
|
636 |
return px.parallel_coordinates(
|
637 |
numeric_df,
|
638 |
color_continuous_scale=config['color_palette']
|
639 |
)
|
640 |
+
|
641 |
elif plot_type == "Density Plot":
|
642 |
return px.density_contour(
|
643 |
df, x=config['x_col'], y=config['y_col'],
|
644 |
color=config['color_col']
|
645 |
)
|
646 |
+
|
647 |
except Exception as e:
|
648 |
st.error(f"Plot generation error: {str(e)}")
|
649 |
return None
|
|
|
652 |
fig = generate_plot(df, plot_type, config)
|
653 |
if fig:
|
654 |
st.plotly_chart(fig, use_container_width=True)
|
655 |
+
|
656 |
# Plot Statistics
|
657 |
with st.expander("📊 Plot Statistics"):
|
658 |
if plot_type in ["Histogram", "Box Plot", "Violin Plot"]:
|
659 |
st.write(f"**{config['x_col']} Statistics**")
|
660 |
st.table(df[config['x_col']].describe())
|
661 |
+
|
662 |
if plot_type in ["Scatter Plot", "Line Plot"]:
|
663 |
st.write(f"**Correlation between {config['x_col']} and {config['y_col']}**")
|
664 |
corr = df[[config['x_col'], config['y_col']]].corr().iloc[0,1]
|
665 |
st.metric("Pearson Correlation", f"{corr:.2f}")
|
666 |
+
|
667 |
if plot_type == "Heatmap":
|
668 |
st.write("**Correlation Matrix**")
|
669 |
numeric_df = df.select_dtypes(include=np.number)
|
|
|
677 |
st.write("**Data Shape**")
|
678 |
st.write(f"Rows: {df.shape[0]}")
|
679 |
st.write(f"Columns: {df.shape[1]}")
|
680 |
+
|
681 |
with col2:
|
682 |
st.write("**Data Types**")
|
683 |
st.dataframe(df.dtypes.reset_index().rename(columns={
|
684 |
'index': 'Column', 0: 'Type'
|
685 |
}))
|
686 |
+
|
687 |
st.write("**Sample Data**")
|
688 |
st.dataframe(df.head())
|
689 |
+
|
690 |
# Model Training Section
|
691 |
elif app_mode == "Model Training":
|
692 |
st.title("🚂 Model Training Studio")
|
|
|
735 |
model_options = ["Logistic Regression", "Decision Tree", "Random Forest", "Gradient Boosting", "SVM", "Neural Network", "KNN", "Naive Bayes"]
|
736 |
model_name = st.selectbox("Select Model", model_options, help="Choose a model.")
|
737 |
|
738 |
+
elif model_name == "Gradient Boosting":
|
739 |
+
learning_rate = st.slider("Learning Rate", 0.01, 1.0, 0.1)
|
740 |
+
n_estimators = st.slider("Number of Estimators", 10, 200, 100)
|
741 |
+
max_depth = st.slider("Max Depth", 3, 20, 10)
|
742 |
+
hyperparams = {
|
743 |
+
'learning_rate': learning_rate,
|
744 |
+
'n_estimators': n_estimators,
|
745 |
+
'max_depth': max_depth
|
746 |
+
}
|
747 |
+
elif model_name == "Neural Network":
|
748 |
+
hidden_layers = st.slider("Number of Hidden Layers", 1, 5, 2)
|
749 |
+
neurons_per_layer = st.slider("Neurons per Layer", 10, 200, 50)
|
750 |
+
activation = st.selectbox("Activation Function",
|
751 |
+
["relu", "tanh", "sigmoid", "selu", "swish"])
|
752 |
+
dropout_rate = st.slider("Dropout Rate", 0.0, 0.5, 0.2)
|
753 |
+
initializer = st.selectbox("Weight Initializer",
|
754 |
+
["glorot_uniform", "he_normal", "lecun_uniform"])
|
755 |
+
learning_rate = st.slider("Learning Rate", 0.0001, 0.1, 0.001, format="%.4f")
|
756 |
+
optimizer_choice = st.selectbox("Optimizer",
|
757 |
+
["Adam", "Nadam", "RMSprop", "SGD"])
|
758 |
+
batch_norm = st.checkbox("Batch Normalization", value=True)
|
759 |
+
regularization = st.checkbox("L2 Regularization")
|
760 |
+
epochs = st.slider("Epochs", 10, 200, 50)
|
761 |
+
batch_size = st.slider("Batch Size", 16, 128, 32)
|
762 |
+
hyperparams = {
|
763 |
+
'hidden_layers': hidden_layers,
|
764 |
+
'neurons_per_layer': neurons_per_layer,
|
765 |
+
'activation': activation,
|
766 |
+
'dropout_rate': dropout_rate,
|
767 |
+
'initializer': initializer,
|
768 |
+
'learning_rate': learning_rate,
|
769 |
+
'optimizer_choice': optimizer_choice,
|
770 |
+
'batch_norm': batch_norm,
|
771 |
+
'regularization': regularization,
|
772 |
+
'epochs': epochs,
|
773 |
+
'batch_size': batch_size,
|
774 |
+
}
|
775 |
+
else:
|
776 |
+
hyperparams = {}
|
777 |
|
778 |
# Train-Test Split
|
779 |
st.subheader("✂️ Train-Test Split")
|
|
|
843 |
else:
|
844 |
model = SVC()
|
845 |
elif model_name == "Neural Network":
|
846 |
+
from tensorflow.keras.models import Sequential
|
847 |
+
from tensorflow.keras.layers import Dense, Dropout, BatchNormalization
|
848 |
+
from tensorflow.keras.optimizers import Adam, Nadam, RMSprop, SGD
|
849 |
+
|
850 |
+
# Build a new model with the parameters
|
851 |
+
model = Sequential()
|
852 |
+
model.add(layers.Input(shape=(X_train_processed.shape[1],)))
|
853 |
+
|
854 |
+
for i in range(hyperparams['hidden_layers']):
|
855 |
+
model.add(Dense(hyperparams['neurons_per_layer'],
|
856 |
+
activation=hyperparams['activation'],
|
857 |
+
kernel_initializer=hyperparams['initializer']))
|
858 |
+
if hyperparams['batch_norm']:
|
859 |
+
model.add(BatchNormalization())
|
860 |
+
model.add(Dropout(hyperparams['dropout_rate']))
|
861 |
+
|
862 |
+
# Output layer
|
863 |
+
output_activation = 'linear' if problem_type == "Regression" else 'softmax'
|
864 |
+
output_units = 1 if problem_type == "Regression" else len(np.unique(y_train))
|
865 |
+
model.add(Dense(output_units, activation=output_activation))
|
866 |
+
|
867 |
+
# Configure optimizer
|
868 |
+
optimizers = {
|
869 |
+
"Adam": Adam(learning_rate=hyperparams['learning_rate']),
|
870 |
+
"Nadam": Nadam(learning_rate=hyperparams['learning_rate']),
|
871 |
+
"RMSprop": RMSprop(learning_rate=hyperparams['learning_rate']),
|
872 |
+
"SGD": SGD(learning_rate=hyperparams['learning_rate'], momentum=0.9)
|
873 |
+
}
|
874 |
+
optimizer = optimizers[hyperparams['optimizer_choice']]
|
875 |
+
|
876 |
+
model.compile(optimizer=optimizer,
|
877 |
+
loss='mse' if problem_type == "Regression" else 'sparse_categorical_crossentropy',
|
878 |
+
metrics=['mae'] if problem_type == "Regression" else ['accuracy'])
|
879 |
elif model_name == "KNN":
|
880 |
+
from sklearn.neighbors import KNeighborsClassifier
|
881 |
model = KNeighborsClassifier()
|
882 |
elif model_name == "Naive Bayes":
|
883 |
+
from sklearn.naive_bayes import GaussianNB
|
884 |
model = GaussianNB()
|
885 |
|
886 |
# Train the model
|
887 |
+
if model_name == "Neural Network": # Only for the neural network
|
888 |
+
history = model.fit(X_train_processed, y_train,
|
889 |
+
epochs=hyperparams['epochs'],
|
890 |
+
batch_size=hyperparams['batch_size'],
|
891 |
+
validation_data=(X_test_processed, y_test),
|
892 |
+
verbose=0)
|
893 |
|
894 |
+
else:
|
895 |
+
model.fit(X_train_processed, y_train)
|
896 |
# Store model and preprocessor
|
897 |
st.session_state.model = Pipeline(steps=[('preprocessor', preprocessor), ('model', model)])
|
898 |
st.session_state.preprocessor = preprocessor
|
899 |
|
900 |
+
# Store the test data for insights and predictions
|
901 |
st.session_state.X_train_selected = X_train_processed
|
902 |
st.session_state.X_test_selected = X_test_processed
|
903 |
st.session_state.y_train = y_train
|
904 |
st.session_state.y_test = y_test
|
905 |
|
906 |
# Model Evaluation
|
|
|
907 |
if problem_type == "Regression":
|
908 |
+
y_pred = model.predict(X_test_processed)
|
909 |
mse = mean_squared_error(y_test, y_pred)
|
910 |
rmse = np.sqrt(mse)
|
911 |
mae = mean_absolute_error(y_test, y_pred)
|
|
|
914 |
st.write(f"Root Mean Squared Error: {rmse:.4f}")
|
915 |
st.write(f"Mean Absolute Error: {mae:.4f}")
|
916 |
st.write(f"R-squared: {r2:.4f}")
|
917 |
+
else: # Classification
|
918 |
+
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_matrix, classification_report
|
919 |
+
y_pred = model.predict(X_test_processed)
|
920 |
+
if model_name == "Neural Network": # Neural network output probabilities
|
921 |
+
y_pred = np.argmax(model.predict(X_test_processed), axis=1)
|
922 |
accuracy = accuracy_score(y_test, y_pred)
|
923 |
precision = precision_score(y_test, y_pred, average='weighted', zero_division=0)
|
924 |
recall = recall_score(y_test, y_pred, average='weighted', zero_division=0)
|
|
|
929 |
st.write(f"F1 Score: {f1:.4f}")
|
930 |
st.write("Classification Report:")
|
931 |
st.text(classification_report(y_test, y_pred))
|
932 |
+
# confusion matrix
|
933 |
+
st.write("Confusion Matrix:")
|
934 |
+
conf_matrix = confusion_matrix(y_test, y_pred)
|
935 |
+
st.write(conf_matrix)
|
936 |
|
937 |
# Visualization
|
938 |
st.subheader("📊 Model Performance Visualization")
|
|
|
944 |
ax.set_ylabel('Predicted')
|
945 |
ax.set_title('Actual vs Predicted')
|
946 |
st.pyplot(fig)
|
947 |
+
elif model_name == "Neural Network":
|
948 |
+
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 4))
|
949 |
+
ax1.plot(history.history['loss'], label='Train Loss')
|
950 |
+
ax1.plot(history.history['val_loss'], label='Validation Loss')
|
951 |
+
ax1.set_title('Loss Evolution')
|
952 |
+
ax1.set_xlabel('Epoch')
|
953 |
+
ax1.set_ylabel('Loss')
|
954 |
+
ax1.legend()
|
955 |
+
|
956 |
+
# Plot accuracy/metric
|
957 |
+
if problem_type == "Classification":
|
958 |
+
ax2.plot(history.history['accuracy'], label='Train Accuracy')
|
959 |
+
ax2.plot(history.history['val_accuracy'], label='Validation Accuracy')
|
960 |
+
ax2.set_title('Accuracy Evolution')
|
961 |
+
ax2.set_ylabel('Accuracy')
|
962 |
+
else:
|
963 |
+
ax2.plot(history.history['mae'], label='Train MAE')
|
964 |
+
ax2.plot(history.history['val_mae'], label='Validation MAE')
|
965 |
+
ax2.set_title('MAE Evolution')
|
966 |
+
ax2.set_ylabel('MAE')
|
967 |
+
|
968 |
+
ax2.set_xlabel('Epoch')
|
969 |
+
ax2.legend()
|
970 |
+
st.pyplot(fig)
|
971 |
+
|
972 |
+
else: # Classification confusion matrix
|
973 |
+
from sklearn.metrics import confusion_matrix
|
974 |
conf_matrix = confusion_matrix(y_test, y_pred)
|
975 |
fig, ax = plt.subplots()
|
976 |
sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues', ax=ax)
|
|
|
978 |
ax.set_ylabel('True Labels')
|
979 |
ax.set_title('Confusion Matrix')
|
980 |
st.pyplot(fig)
|
|
|
981 |
st.success("Model trained successfully!")
|
982 |
except Exception as e:
|
983 |
st.error(f"An error occurred during training: {e}")
|
|
|
995 |
st.warning("No trained model available. Train a model first to enable saving.")
|
996 |
|
997 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
998 |
# Insights Section
|
999 |
elif app_mode == "Insights":
|
1000 |
st.title("📊 Model Insights & Explainability")
|
|
|
1025 |
'Feature': feature_names,
|
1026 |
'Importance': importances
|
1027 |
}).sort_values('Importance', ascending=False)
|
1028 |
+
|
1029 |
fig, ax = plt.subplots()
|
1030 |
sns.barplot(x='Importance', y='Feature', data=importance_df.head(10), ax=ax)
|
1031 |
ax.set_title('Top 10 Feature Importances')
|
|
|
1038 |
if st.checkbox("Calculate SHAP Values (Warning: May be slow for large datasets)"):
|
1039 |
try:
|
1040 |
import shap
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1041 |
|
1042 |
+
# Use KernelExplainer for models that don't have a built-in explainer
|
1043 |
+
if not hasattr(model, 'predict'):
|
1044 |
+
explainer = shap.KernelExplainer(model.predict, st.session_state.X_train_selected[:100, :]) # Use a sample of training data
|
1045 |
+
|
1046 |
+
shap_values = explainer.shap_values(st.session_state.X_test_selected)
|
1047 |
+
feature_names = preprocessor.get_feature_names_out()
|
1048 |
+
# Summary Plot
|
1049 |
+
st.write("### Summary Plot")
|
1050 |
+
fig, ax = plt.subplots()
|
1051 |
+
shap.summary_plot(shap_values, features=st.session_state.X_test_selected, feature_names=feature_names, show=False, plot_type="bar") # Change to bar for a cleaner visualization
|
1052 |
+
st.pyplot(fig)
|
1053 |
+
|
1054 |
+
# Force Plot for Individual Predictions
|
1055 |
+
st.write("### Individual Prediction Explanation")
|
1056 |
+
sample_idx = st.slider("Select Sample Index", 0, len(st.session_state.X_test_selected) - 1, 0)
|
1057 |
+
fig, ax = plt.subplots()
|
1058 |
+
shap.force_plot(explainer.expected_value, shap_values[sample_idx], st.session_state.X_test_selected[sample_idx],
|
1059 |
+
feature_names=feature_names, matplotlib=True, show=False)
|
1060 |
+
st.pyplot(fig)
|
1061 |
+
else:
|
1062 |
+
explainer = shap.TreeExplainer(model)
|
1063 |
+
shap_values = explainer.shap_values(st.session_state.X_test_selected)
|
1064 |
+
feature_names = preprocessor.get_feature_names_out()
|
1065 |
+
# Summary Plot
|
1066 |
+
st.write("### Summary Plot")
|
1067 |
+
fig, ax = plt.subplots()
|
1068 |
+
shap.summary_plot(shap_values, features=st.session_state.X_test_selected, feature_names=feature_names, show=False, plot_type="bar") # Change to bar for a cleaner visualization
|
1069 |
+
st.pyplot(fig)
|
1070 |
+
|
1071 |
+
# Force Plot for Individual Predictions
|
1072 |
+
st.write("### Individual Prediction Explanation")
|
1073 |
+
sample_idx = st.slider("Select Sample Index", 0, len(st.session_state.X_test_selected) - 1, 0)
|
1074 |
+
fig, ax = plt.subplots()
|
1075 |
+
shap.force_plot(explainer.expected_value, shap_values[sample_idx], st.session_state.X_test_selected[sample_idx],
|
1076 |
+
feature_names=feature_names, matplotlib=True, show=False)
|
1077 |
+
st.pyplot(fig)
|
1078 |
+
|
1079 |
except Exception as e:
|
1080 |
st.error(f"SHAP calculation failed: {e}")
|
1081 |
|
|
|
1087 |
from sklearn.inspection import PartialDependenceDisplay
|
1088 |
fig, ax = plt.subplots()
|
1089 |
PartialDependenceDisplay.from_estimator(
|
1090 |
+
model, st.session_state.X_test_selected,
|
1091 |
+
features=[feature_to_plot],
|
1092 |
feature_names=preprocessor.get_feature_names_out(),
|
1093 |
ax=ax
|
1094 |
)
|
|
|
1102 |
'metric': [],
|
1103 |
'value': []
|
1104 |
}
|
1105 |
+
|
1106 |
if hasattr(model, 'predict'):
|
1107 |
y_pred = model.predict(st.session_state.X_test_selected)
|
1108 |
mse = mean_squared_error(st.session_state.y_test, y_pred)
|
1109 |
performance_history['timestamp'].append(datetime.now())
|
1110 |
performance_history['metric'].append('MSE')
|
1111 |
performance_history['value'].append(mse)
|
1112 |
+
|
1113 |
performance_df = pd.DataFrame(performance_history)
|
1114 |
st.line_chart(performance_df.set_index('timestamp'))
|
1115 |
|
|
|
1138 |
st.success("Insights exported successfully!")
|
1139 |
except Exception as e:
|
1140 |
st.error(f"Export failed: {e}")
|
|
|
1141 |
|
1142 |
# Predictions Section
|
1143 |
elif app_mode == "Predictions":
|
|
|
1170 |
input_df = pd.DataFrame([input_data])
|
1171 |
input_processed = preprocessor.transform(input_df)
|
1172 |
prediction = model.predict(input_processed)[0]
|
1173 |
+
|
1174 |
st.write(f"**Prediction:** {prediction}")
|
1175 |
+
|
1176 |
if hasattr(model, 'predict_proba'):
|
1177 |
probabilities = model.predict_proba(input_processed)[0]
|
1178 |
st.write("**Prediction Probabilities:**")
|
|
|
1182 |
if st.checkbox("Show SHAP Explanation"):
|
1183 |
try:
|
1184 |
import shap
|
1185 |
+
# Use KernelExplainer or TreeExplainer, checking if the model has the property first
|
1186 |
+
if hasattr(model, 'predict'):
|
1187 |
+
explainer = shap.TreeExplainer(model)
|
1188 |
+
shap_values = explainer.shap_values(input_processed)
|
1189 |
+
else:
|
1190 |
+
explainer = shap.KernelExplainer(model.predict, st.session_state.X_train_selected[:100, :])
|
1191 |
+
shap_values = explainer.shap_values(input_processed)
|
1192 |
+
|
1193 |
st.write("### SHAP Values")
|
1194 |
fig, ax = plt.subplots()
|
1195 |
+
shap.force_plot(explainer.expected_value, shap_values, input_processed,
|
1196 |
feature_names=feature_names, matplotlib=True, show=False)
|
1197 |
st.pyplot(fig)
|
1198 |
+
|
1199 |
except Exception as e:
|
1200 |
st.error(f"SHAP calculation failed: {e}")
|
1201 |
|
|
|
1268 |
pdf.cell(200, 10, txt=f"Problem Type: {'Regression' if hasattr(model, 'predict') else 'Classification'}", ln=True)
|
1269 |
pdf.output("predictions_report.pdf")
|
1270 |
st.success("Predictions exported successfully!")
|
1271 |
+
except Exception as e:
|
1272 |
+
st.error(f"An unexpected error occurred: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|