Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,21 +1,35 @@
|
|
1 |
-
|
2 |
-
import groq
|
3 |
import os
|
4 |
import tempfile
|
5 |
import uuid
|
6 |
-
from dotenv import load_dotenv
|
7 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
8 |
-
from langchain.vectorstores import FAISS
|
9 |
-
from langchain.embeddings import HuggingFaceEmbeddings
|
10 |
-
import fitz # PyMuPDF
|
11 |
import base64
|
12 |
-
from PIL import Image
|
13 |
import io
|
14 |
-
import requests
|
15 |
import json
|
16 |
import re
|
17 |
from datetime import datetime, timedelta
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
# Load environment variables
|
20 |
load_dotenv()
|
21 |
client = groq.Client(api_key=os.getenv("GROQ_TECH_API_KEY"))
|
@@ -29,47 +43,371 @@ if not os.path.exists(FAISS_INDEX_DIR):
|
|
29 |
# Dictionary to store user-specific vectorstores
|
30 |
user_vectorstores = {}
|
31 |
|
32 |
-
#
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
}
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
.
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
.
|
62 |
-
.
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
.
|
67 |
-
.
|
68 |
-
.
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
"""
|
74 |
|
75 |
# Function to process PDF files
|
@@ -109,8 +447,147 @@ def process_pdf(pdf_file):
|
|
109 |
os.unlink(pdf_path)
|
110 |
return None, f"Error processing PDF: {str(e)}", {"page_images": [], "total_pages": 0, "total_words": 0}
|
111 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
# Function to generate chatbot responses with Tech theme
|
113 |
-
def generate_response(message, session_id, model_name, history):
|
114 |
if not message:
|
115 |
return history
|
116 |
try:
|
@@ -121,8 +598,8 @@ def generate_response(message, session_id, model_name, history):
|
|
121 |
if docs:
|
122 |
context = "\n\nRelevant information from uploaded PDF:\n" + "\n".join(f"- {doc.page_content}" for doc in docs)
|
123 |
|
124 |
-
# Check if it's a GitHub repo search
|
125 |
-
if re.match(r'^/github\s+.+', message, re.IGNORECASE):
|
126 |
query = re.sub(r'^/github\s+', '', message, flags=re.IGNORECASE)
|
127 |
repo_results = search_github_repos(query)
|
128 |
if repo_results:
|
@@ -139,8 +616,8 @@ def generate_response(message, session_id, model_name, history):
|
|
139 |
history.append((message, "No GitHub repositories found for your query."))
|
140 |
return history
|
141 |
|
142 |
-
# Check if it's a Stack Overflow search
|
143 |
-
if re.match(r'^/stack\s+.+', message, re.IGNORECASE):
|
144 |
query = re.sub(r'^/stack\s+', '', message, flags=re.IGNORECASE)
|
145 |
qa_results = search_stackoverflow(query)
|
146 |
if qa_results:
|
@@ -433,110 +910,402 @@ def perform_stack_search(query, tag, sort_by):
|
|
433 |
except Exception as e:
|
434 |
return f"Error searching Stack Overflow: {str(e)}"
|
435 |
|
436 |
-
|
437 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
438 |
current_session_id = gr.State(None)
|
439 |
pdf_state = gr.State({"page_images": [], "total_pages": 0, "total_words": 0})
|
|
|
|
|
|
|
|
|
440 |
gr.HTML("""
|
441 |
-
|
442 |
-
|
443 |
-
|
|
|
|
|
|
|
444 |
</div>
|
445 |
""")
|
446 |
-
|
447 |
with gr.Column(scale=1, min_width=300):
|
448 |
-
|
449 |
-
|
450 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
451 |
model_dropdown = gr.Dropdown(
|
452 |
choices=["llama3-70b-8192", "llama3-8b-8192", "mixtral-8x7b-32768", "gemma-7b-it"],
|
453 |
value="llama3-70b-8192",
|
454 |
label="Select Groq Model"
|
455 |
)
|
456 |
-
|
457 |
-
# Tech Tools Section
|
458 |
-
gr.Markdown("### Developer Tools", elem_classes="tool-title")
|
459 |
-
with gr.Group(elem_classes="tool-container"):
|
460 |
-
with gr.Tabs():
|
461 |
-
with gr.TabItem("GitHub Search"):
|
462 |
-
repo_query = gr.Textbox(label="Search Query", placeholder="Enter keywords to search for repositories")
|
463 |
-
with gr.Row():
|
464 |
-
language = gr.Dropdown(
|
465 |
-
choices=["any", "JavaScript", "Python", "Java", "C++", "TypeScript", "Go", "Rust", "PHP", "C#"],
|
466 |
-
value="any",
|
467 |
-
label="Language"
|
468 |
-
)
|
469 |
-
min_stars = gr.Dropdown(
|
470 |
-
choices=["0", "10", "50", "100", "1000", "10000"],
|
471 |
-
value="0",
|
472 |
-
label="Min Stars"
|
473 |
-
)
|
474 |
-
sort_by = gr.Dropdown(
|
475 |
-
choices=["stars", "forks", "updated"],
|
476 |
-
value="stars",
|
477 |
-
label="Sort By"
|
478 |
-
)
|
479 |
-
repo_search_btn = gr.Button("Search Repositories")
|
480 |
-
|
481 |
-
with gr.TabItem("Stack Overflow"):
|
482 |
-
stack_query = gr.Textbox(label="Search Query", placeholder="Enter your technical question")
|
483 |
-
with gr.Row():
|
484 |
-
tag = gr.Dropdown(
|
485 |
-
choices=["any", "python", "javascript", "java", "c++", "react", "node.js", "android", "ios", "sql"],
|
486 |
-
value="any",
|
487 |
-
label="Tag"
|
488 |
-
)
|
489 |
-
so_sort_by = gr.Dropdown(
|
490 |
-
choices=["votes", "newest", "activity"],
|
491 |
-
value="votes",
|
492 |
-
label="Sort By"
|
493 |
-
)
|
494 |
-
so_search_btn = gr.Button("Search Stack Overflow")
|
495 |
-
|
496 |
-
with gr.TabItem("Code Explainer"):
|
497 |
-
code_input = gr.Textbox(
|
498 |
-
label="Code to Explain",
|
499 |
-
placeholder="Paste your code here...",
|
500 |
-
lines=10
|
501 |
-
)
|
502 |
-
explain_btn = gr.Button("Explain Code")
|
503 |
-
|
504 |
with gr.Column(scale=2, min_width=600):
|
505 |
with gr.Tabs():
|
506 |
with gr.TabItem("PDF Viewer"):
|
507 |
with gr.Column(elem_classes="pdf-viewer-container"):
|
508 |
page_slider = gr.Slider(minimum=1, maximum=1, step=1, label="Page Number", value=1)
|
509 |
pdf_image = gr.Image(label="PDF Page", type="pil", elem_classes="pdf-viewer-image")
|
510 |
-
|
511 |
|
512 |
-
with gr.TabItem("
|
513 |
-
|
|
|
514 |
|
515 |
-
with gr.TabItem("
|
516 |
-
|
517 |
-
|
518 |
-
|
519 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
520 |
|
|
|
521 |
with gr.Row(elem_classes="container"):
|
522 |
with gr.Column(scale=2, min_width=600):
|
523 |
-
chatbot = gr.Chatbot(
|
|
|
|
|
|
|
|
|
|
|
524 |
with gr.Row():
|
525 |
-
msg = gr.Textbox(
|
|
|
|
|
|
|
|
|
|
|
526 |
send_btn = gr.Button("Send", scale=1)
|
527 |
-
|
|
|
|
|
|
|
|
|
528 |
|
529 |
-
# Event Handlers
|
530 |
-
|
|
|
|
|
|
|
|
|
531 |
process_pdf,
|
532 |
inputs=[pdf_file],
|
533 |
-
outputs=[current_session_id,
|
534 |
).then(
|
535 |
update_pdf_viewer,
|
536 |
inputs=[pdf_state],
|
537 |
-
outputs=[page_slider, pdf_image,
|
538 |
)
|
539 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
540 |
msg.submit(
|
541 |
generate_response,
|
542 |
inputs=[msg, current_session_id, model_dropdown, chatbot],
|
@@ -549,44 +1318,59 @@ with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
|
|
549 |
outputs=[chatbot]
|
550 |
).then(lambda: "", None, [msg])
|
551 |
|
552 |
-
|
553 |
-
|
554 |
-
|
555 |
-
[
|
|
|
556 |
)
|
557 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
558 |
page_slider.change(
|
559 |
update_image,
|
560 |
inputs=[page_slider, pdf_state],
|
561 |
outputs=[pdf_image]
|
562 |
)
|
563 |
|
564 |
-
#
|
565 |
-
|
566 |
-
|
567 |
-
|
568 |
-
|
569 |
-
|
570 |
-
|
571 |
-
|
572 |
-
|
573 |
-
|
574 |
-
|
575 |
-
|
576 |
-
|
577 |
-
|
578 |
-
|
579 |
-
|
580 |
-
outputs=[code_explanation]
|
581 |
)
|
582 |
|
583 |
-
# Add footer with attribution
|
584 |
-
gr.HTML("""
|
585 |
-
<div style="text-align: center; margin-top: 20px; padding: 10px; color: #666; font-size: 0.8rem; border-top: 1px solid #eee;">
|
586 |
-
|
587 |
-
</div>
|
588 |
-
""")
|
|
|
|
|
589 |
|
590 |
# Launch the app
|
591 |
if __name__ == "__main__":
|
|
|
592 |
demo.launch()
|
|
|
1 |
+
# Standard library imports
|
|
|
2 |
import os
|
3 |
import tempfile
|
4 |
import uuid
|
|
|
|
|
|
|
|
|
|
|
5 |
import base64
|
|
|
6 |
import io
|
|
|
7 |
import json
|
8 |
import re
|
9 |
from datetime import datetime, timedelta
|
10 |
|
11 |
+
# Third-party imports
|
12 |
+
import gradio as gr
|
13 |
+
import groq
|
14 |
+
import numpy as np
|
15 |
+
import pandas as pd
|
16 |
+
import openpyxl
|
17 |
+
import requests
|
18 |
+
import fitz # PyMuPDF
|
19 |
+
from PIL import Image
|
20 |
+
from dotenv import load_dotenv
|
21 |
+
from transformers import AutoProcessor, AutoModelForVision2Seq
|
22 |
+
import torch
|
23 |
+
import sass
|
24 |
+
from pathlib import Path
|
25 |
+
import pyttsx3
|
26 |
+
import speech_recognition as sr
|
27 |
+
|
28 |
+
# LangChain imports
|
29 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
30 |
+
from langchain_community.vectorstores import FAISS
|
31 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
32 |
+
|
33 |
# Load environment variables
|
34 |
load_dotenv()
|
35 |
client = groq.Client(api_key=os.getenv("GROQ_TECH_API_KEY"))
|
|
|
43 |
# Dictionary to store user-specific vectorstores
|
44 |
user_vectorstores = {}
|
45 |
|
46 |
+
# Advanced SCSS with cyberpunk styling
|
47 |
+
CYBERPUNK_SCSS = """
|
48 |
+
// Advanced Cyberpunk Theme with Neural Network Aesthetics
|
49 |
+
@use "sass:math";
|
50 |
+
@use "sass:color";
|
51 |
+
|
52 |
+
// Neural Color System
|
53 |
+
$neural-colors: (
|
54 |
+
'synapse-blue': #00F3FF,
|
55 |
+
'neural-red': #FF0033,
|
56 |
+
'data-yellow': #FFE600,
|
57 |
+
'matrix-green': #00FF9F,
|
58 |
+
'void-black': #0D0D0D,
|
59 |
+
'deep-void': #080808,
|
60 |
+
'neural-white': #E6E6E6,
|
61 |
+
'grid-alpha': 0.1
|
62 |
+
);
|
63 |
+
|
64 |
+
// Dynamic Color Functions
|
65 |
+
@function neural-glow($color, $intensity: 1) {
|
66 |
+
$glow-color: map-get($neural-colors, $color);
|
67 |
+
@return (
|
68 |
+
0 0 #{10px * $intensity} $glow-color,
|
69 |
+
0 0 #{20px * $intensity} $glow-color
|
70 |
+
);
|
71 |
+
}
|
72 |
+
|
73 |
+
@function generate-glitch-animation($name, $color1, $color2) {
|
74 |
+
@keyframes #{$name} {
|
75 |
+
0%, 100% {
|
76 |
+
text-shadow: -2px 0 map-get($neural-colors, $color1),
|
77 |
+
2px 2px map-get($neural-colors, $color2);
|
78 |
+
}
|
79 |
+
25% {
|
80 |
+
text-shadow: 2px -2px map-get($neural-colors, $color1),
|
81 |
+
-2px -2px map-get($neural-colors, $color2);
|
82 |
+
}
|
83 |
+
50% {
|
84 |
+
text-shadow: 1px 3px map-get($neural-colors, $color1),
|
85 |
+
-3px -1px map-get($neural-colors, $color2);
|
86 |
+
}
|
87 |
+
75% {
|
88 |
+
text-shadow: -3px 1px map-get($neural-colors, $color1),
|
89 |
+
1px -1px map-get($neural-colors, $color2);
|
90 |
+
}
|
91 |
+
}
|
92 |
+
}
|
93 |
+
|
94 |
+
// Generate Multiple Glitch Animations
|
95 |
+
#{generate-glitch-animation('neural-glitch', 'synapse-blue', 'neural-red')}
|
96 |
+
#{generate-glitch-animation('data-glitch', 'data-yellow', 'matrix-green')}
|
97 |
+
|
98 |
+
// Advanced Mixins
|
99 |
+
@mixin neural-container($depth: 1) {
|
100 |
+
background: linear-gradient(
|
101 |
+
170deg,
|
102 |
+
rgba(map-get($neural-colors, 'deep-void'), 0.9),
|
103 |
+
rgba(map-get($neural-colors, 'void-black'), 0.95)
|
104 |
+
);
|
105 |
+
border: #{$depth}px solid map-get($neural-colors, 'synapse-blue');
|
106 |
+
box-shadow: neural-glow('synapse-blue', $depth);
|
107 |
+
backdrop-filter: blur(5px);
|
108 |
+
position: relative;
|
109 |
+
overflow: hidden;
|
110 |
+
|
111 |
+
&::before {
|
112 |
+
content: '';
|
113 |
+
position: absolute;
|
114 |
+
top: 0;
|
115 |
+
left: 0;
|
116 |
+
right: 0;
|
117 |
+
height: 1px;
|
118 |
+
background: linear-gradient(
|
119 |
+
90deg,
|
120 |
+
transparent,
|
121 |
+
map-get($neural-colors, 'synapse-blue'),
|
122 |
+
transparent
|
123 |
+
);
|
124 |
+
animation: neural-scan 2s linear infinite;
|
125 |
+
}
|
126 |
+
}
|
127 |
+
|
128 |
+
@mixin cyber-text($size, $color: 'synapse-blue') {
|
129 |
+
font-family: 'Orbitron', 'Rajdhani', sans-serif;
|
130 |
+
font-size: $size;
|
131 |
+
color: map-get($neural-colors, $color);
|
132 |
+
text-transform: uppercase;
|
133 |
+
letter-spacing: 2px;
|
134 |
+
position: relative;
|
135 |
+
text-shadow: 0 0 5px map-get($neural-colors, $color);
|
136 |
+
}
|
137 |
+
|
138 |
+
// Advanced Animations
|
139 |
+
@keyframes neural-scan {
|
140 |
+
0% { transform: translateX(-100%); opacity: 0; }
|
141 |
+
50% { opacity: 1; }
|
142 |
+
100% { transform: translateX(100%); opacity: 0; }
|
143 |
+
}
|
144 |
+
|
145 |
+
@keyframes data-pulse {
|
146 |
+
0%, 100% { opacity: 0.8; transform: scale(1); }
|
147 |
+
50% { opacity: 1; transform: scale(1.02); }
|
148 |
+
}
|
149 |
+
|
150 |
+
// Base Styles
|
151 |
+
body {
|
152 |
+
background-color: map-get($neural-colors, 'void-black');
|
153 |
+
background-image:
|
154 |
+
linear-gradient(
|
155 |
+
rgba(map-get($neural-colors, 'synapse-blue'),
|
156 |
+
map-get($neural-colors, 'grid-alpha')) 1px,
|
157 |
+
transparent 1px
|
158 |
+
),
|
159 |
+
linear-gradient(
|
160 |
+
90deg,
|
161 |
+
rgba(map-get($neural-colors, 'synapse-blue'),
|
162 |
+
map-get($neural-colors, 'grid-alpha')) 1px,
|
163 |
+
transparent 1px
|
164 |
+
);
|
165 |
+
background-size: 20px 20px;
|
166 |
+
color: map-get($neural-colors, 'neural-white');
|
167 |
+
}
|
168 |
+
|
169 |
+
// Advanced Components
|
170 |
+
.neural-interface {
|
171 |
+
@include neural-container(2);
|
172 |
+
padding: 20px;
|
173 |
+
margin: 20px;
|
174 |
+
clip-path: polygon(
|
175 |
+
0 20px,
|
176 |
+
20px 0,
|
177 |
+
calc(100% - 20px) 0,
|
178 |
+
100% 20px,
|
179 |
+
100% calc(100% - 20px),
|
180 |
+
calc(100% - 20px) 100%,
|
181 |
+
20px 100%,
|
182 |
+
0 calc(100% - 20px)
|
183 |
+
);
|
184 |
+
|
185 |
+
&__header {
|
186 |
+
@include cyber-text(2rem);
|
187 |
+
text-align: center;
|
188 |
+
margin-bottom: 20px;
|
189 |
+
animation: neural-glitch 5s infinite;
|
190 |
+
}
|
191 |
+
|
192 |
+
&__content {
|
193 |
+
position: relative;
|
194 |
+
z-index: 1;
|
195 |
+
}
|
196 |
+
}
|
197 |
+
|
198 |
+
.data-display {
|
199 |
+
@include neural-container(1);
|
200 |
+
padding: 15px;
|
201 |
+
margin: 10px 0;
|
202 |
+
animation: data-pulse 4s infinite;
|
203 |
+
|
204 |
+
&__label {
|
205 |
+
@include cyber-text(0.9rem, 'data-yellow');
|
206 |
+
margin-bottom: 5px;
|
207 |
+
}
|
208 |
+
|
209 |
+
&__value {
|
210 |
+
@include cyber-text(1.2rem, 'matrix-green');
|
211 |
+
}
|
212 |
+
}
|
213 |
+
|
214 |
+
// Interactive Elements
|
215 |
+
.neural-button {
|
216 |
+
@include neural-container(1);
|
217 |
+
padding: 10px 20px;
|
218 |
+
cursor: pointer;
|
219 |
+
transition: all 0.3s ease;
|
220 |
+
|
221 |
+
&:hover {
|
222 |
+
transform: translateY(-2px) scale(1.02);
|
223 |
+
box-shadow: neural-glow('synapse-blue', 2);
|
224 |
+
}
|
225 |
+
|
226 |
+
&:active {
|
227 |
+
transform: translateY(1px);
|
228 |
+
}
|
229 |
+
}
|
230 |
+
|
231 |
+
// Code Display
|
232 |
+
.code-matrix {
|
233 |
+
@include neural-container(1);
|
234 |
+
font-family: 'Source Code Pro', monospace;
|
235 |
+
padding: 20px;
|
236 |
+
margin: 15px 0;
|
237 |
+
|
238 |
+
&__line {
|
239 |
+
position: relative;
|
240 |
+
padding-left: 20px;
|
241 |
+
|
242 |
+
&::before {
|
243 |
+
content: '>';
|
244 |
+
position: absolute;
|
245 |
+
left: 0;
|
246 |
+
color: map-get($neural-colors, 'matrix-green');
|
247 |
+
}
|
248 |
+
}
|
249 |
+
}
|
250 |
+
|
251 |
+
// Status Indicators
|
252 |
+
.neural-status {
|
253 |
+
display: flex;
|
254 |
+
align-items: center;
|
255 |
+
gap: 10px;
|
256 |
+
|
257 |
+
&__indicator {
|
258 |
+
width: 10px;
|
259 |
+
height: 10px;
|
260 |
+
border-radius: 50%;
|
261 |
+
background: map-get($neural-colors, 'matrix-green');
|
262 |
+
animation: data-pulse 2s infinite;
|
263 |
+
}
|
264 |
+
|
265 |
+
&__text {
|
266 |
+
@include cyber-text(0.9rem, 'matrix-green');
|
267 |
+
}
|
268 |
+
}
|
269 |
+
|
270 |
+
// Advanced Grid Layout
|
271 |
+
.neural-grid {
|
272 |
+
display: grid;
|
273 |
+
grid-template-columns: repeat(auto-fit, minmax(250px, 1fr));
|
274 |
+
gap: 20px;
|
275 |
+
padding: 20px;
|
276 |
+
|
277 |
+
&__item {
|
278 |
+
@include neural-container(1);
|
279 |
+
padding: 15px;
|
280 |
+
transition: transform 0.3s ease;
|
281 |
+
|
282 |
+
&:hover {
|
283 |
+
transform: translateZ(20px);
|
284 |
+
z-index: 2;
|
285 |
+
}
|
286 |
+
}
|
287 |
}
|
288 |
+
"""
|
289 |
+
|
290 |
+
# Compile SCSS to CSS
|
291 |
+
def compile_scss():
|
292 |
+
try:
|
293 |
+
return sass.compile(string=CYBERPUNK_SCSS)
|
294 |
+
except sass.CompileError as e:
|
295 |
+
print(f"SCSS Compilation Error: {e}")
|
296 |
+
return ""
|
297 |
+
|
298 |
+
# Advanced JavaScript for dynamic effects
|
299 |
+
NEURAL_JS = """
|
300 |
+
<script>
|
301 |
+
class NeuralInterface {
|
302 |
+
constructor() {
|
303 |
+
this.initializeEffects();
|
304 |
+
this.setupEventListeners();
|
305 |
+
}
|
306 |
+
|
307 |
+
initializeEffects() {
|
308 |
+
this.setupGlitchEffects();
|
309 |
+
this.setupDataStreams();
|
310 |
+
this.setupHolographicEffects();
|
311 |
+
}
|
312 |
+
|
313 |
+
setupGlitchEffects() {
|
314 |
+
document.querySelectorAll('.neural-interface__header').forEach(element => {
|
315 |
+
setInterval(() => {
|
316 |
+
if (Math.random() < 0.1) {
|
317 |
+
element.style.transform = `translate(${Math.random() * 4 - 2}px, ${Math.random() * 4 - 2}px)`;
|
318 |
+
setTimeout(() => element.style.transform = 'none', 100);
|
319 |
+
}
|
320 |
+
}, 2000);
|
321 |
+
});
|
322 |
+
}
|
323 |
+
|
324 |
+
setupDataStreams() {
|
325 |
+
const canvas = document.createElement('canvas');
|
326 |
+
document.body.appendChild(canvas);
|
327 |
+
canvas.style.position = 'fixed';
|
328 |
+
canvas.style.top = '0';
|
329 |
+
canvas.style.left = '0';
|
330 |
+
canvas.style.width = '100%';
|
331 |
+
canvas.style.height = '100%';
|
332 |
+
canvas.style.pointerEvents = 'none';
|
333 |
+
canvas.style.zIndex = '1';
|
334 |
+
canvas.style.opacity = '0.1';
|
335 |
+
|
336 |
+
const ctx = canvas.getContext('2d');
|
337 |
+
const matrix = "ABCDEFGHIJKLMNOPQRSTUVWXYZ123456789@#$%^&*()*&^%";
|
338 |
+
const drops = [];
|
339 |
+
|
340 |
+
function initMatrix() {
|
341 |
+
canvas.width = window.innerWidth;
|
342 |
+
canvas.height = window.innerHeight;
|
343 |
+
const columns = canvas.width / 20;
|
344 |
+
for(let i = 0; i < columns; i++) drops[i] = 1;
|
345 |
+
}
|
346 |
+
|
347 |
+
function drawMatrix() {
|
348 |
+
ctx.fillStyle = 'rgba(0, 0, 0, 0.05)';
|
349 |
+
ctx.fillRect(0, 0, canvas.width, canvas.height);
|
350 |
+
ctx.fillStyle = '#0F0';
|
351 |
+
ctx.font = '15px monospace';
|
352 |
+
for(let i = 0; i < drops.length; i++) {
|
353 |
+
const text = matrix[Math.floor(Math.random() * matrix.length)];
|
354 |
+
ctx.fillText(text, i * 20, drops[i] * 20);
|
355 |
+
if(drops[i] * 20 > canvas.height && Math.random() > 0.975)
|
356 |
+
drops[i] = 0;
|
357 |
+
drops[i]++;
|
358 |
+
}
|
359 |
+
}
|
360 |
+
|
361 |
+
window.addEventListener('resize', initMatrix);
|
362 |
+
initMatrix();
|
363 |
+
setInterval(drawMatrix, 50);
|
364 |
+
}
|
365 |
+
|
366 |
+
setupHolographicEffects() {
|
367 |
+
document.querySelectorAll('.neural-button').forEach(button => {
|
368 |
+
button.addEventListener('mousemove', e => {
|
369 |
+
const rect = button.getBoundingClientRect();
|
370 |
+
const x = e.clientX - rect.left;
|
371 |
+
const y = e.clientY - rect.top;
|
372 |
+
|
373 |
+
button.style.setProperty('--x', `${x}px`);
|
374 |
+
button.style.setProperty('--y', `${y}px`);
|
375 |
+
});
|
376 |
+
});
|
377 |
+
}
|
378 |
+
|
379 |
+
setupEventListeners() {
|
380 |
+
document.addEventListener('click', e => {
|
381 |
+
if (e.target.closest('.neural-button')) {
|
382 |
+
this.createRippleEffect(e);
|
383 |
+
}
|
384 |
+
});
|
385 |
+
}
|
386 |
+
|
387 |
+
createRippleEffect(e) {
|
388 |
+
const button = e.target.closest('.neural-button');
|
389 |
+
const ripple = document.createElement('span');
|
390 |
+
ripple.classList.add('ripple');
|
391 |
+
button.appendChild(ripple);
|
392 |
+
|
393 |
+
const rect = button.getBoundingClientRect();
|
394 |
+
const size = Math.max(rect.width, rect.height);
|
395 |
+
ripple.style.width = ripple.style.height = `${size}px`;
|
396 |
+
|
397 |
+
const x = e.clientX - rect.left - size/2;
|
398 |
+
const y = e.clientY - rect.top - size/2;
|
399 |
+
ripple.style.left = `${x}px`;
|
400 |
+
ripple.style.top = `${y}px`;
|
401 |
+
|
402 |
+
setTimeout(() => ripple.remove(), 600);
|
403 |
+
}
|
404 |
+
}
|
405 |
+
|
406 |
+
// Initialize Neural Interface
|
407 |
+
document.addEventListener('DOMContentLoaded', () => {
|
408 |
+
new NeuralInterface();
|
409 |
+
});
|
410 |
+
</script>
|
411 |
"""
|
412 |
|
413 |
# Function to process PDF files
|
|
|
447 |
os.unlink(pdf_path)
|
448 |
return None, f"Error processing PDF: {str(e)}", {"page_images": [], "total_pages": 0, "total_words": 0}
|
449 |
|
450 |
+
# New function to process Excel files
|
451 |
+
def process_excel(excel_file):
|
452 |
+
if excel_file is None:
|
453 |
+
return None, "No file uploaded", {"data_preview": "", "total_sheets": 0, "total_rows": 0}
|
454 |
+
|
455 |
+
try:
|
456 |
+
session_id = str(uuid.uuid4())
|
457 |
+
with tempfile.NamedTemporaryFile(suffix=".xlsx", delete=False) as temp_file:
|
458 |
+
temp_file.write(excel_file)
|
459 |
+
excel_path = temp_file.name
|
460 |
+
|
461 |
+
# Read Excel file with pandas
|
462 |
+
excel_data = pd.ExcelFile(excel_path)
|
463 |
+
sheet_names = excel_data.sheet_names
|
464 |
+
all_texts = []
|
465 |
+
total_rows = 0
|
466 |
+
|
467 |
+
# Process each sheet
|
468 |
+
for sheet in sheet_names:
|
469 |
+
df = pd.read_excel(excel_path, sheet_name=sheet)
|
470 |
+
total_rows += len(df)
|
471 |
+
|
472 |
+
# Convert dataframe to text for vectorization
|
473 |
+
sheet_text = f"Sheet: {sheet}\n"
|
474 |
+
sheet_text += df.to_string(index=False)
|
475 |
+
all_texts.append(sheet_text)
|
476 |
+
|
477 |
+
# Generate HTML preview of first sheet
|
478 |
+
first_df = pd.read_excel(excel_path, sheet_name=0)
|
479 |
+
preview_rows = min(10, len(first_df))
|
480 |
+
data_preview = first_df.head(preview_rows).to_html(classes="excel-preview-table", index=False)
|
481 |
+
|
482 |
+
# Process for vectorstore
|
483 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
484 |
+
chunks = text_splitter.create_documents(all_texts)
|
485 |
+
vectorstore = FAISS.from_documents(chunks, embeddings)
|
486 |
+
index_path = os.path.join(FAISS_INDEX_DIR, session_id)
|
487 |
+
vectorstore.save_local(index_path)
|
488 |
+
user_vectorstores[session_id] = vectorstore
|
489 |
+
|
490 |
+
os.unlink(excel_path)
|
491 |
+
excel_state = {"data_preview": data_preview, "total_sheets": len(sheet_names), "total_rows": total_rows}
|
492 |
+
return session_id, f"β
Successfully processed {len(chunks)} text chunks from Excel file", excel_state
|
493 |
+
except Exception as e:
|
494 |
+
if "excel_path" in locals() and os.path.exists(excel_path):
|
495 |
+
os.unlink(excel_path)
|
496 |
+
return None, f"Error processing Excel file: {str(e)}", {"data_preview": "", "total_sheets": 0, "total_rows": 0}
|
497 |
+
|
498 |
+
# Function to analyze image using SmolDocling
|
499 |
+
def analyze_image(image_file):
|
500 |
+
"""
|
501 |
+
Basic image analysis function that doesn't rely on external models
|
502 |
+
"""
|
503 |
+
if image_file is None:
|
504 |
+
return "No image uploaded. Please upload an image to analyze."
|
505 |
+
|
506 |
+
try:
|
507 |
+
image = Image.open(image_file)
|
508 |
+
width, height = image.size
|
509 |
+
format = image.format
|
510 |
+
mode = image.mode
|
511 |
+
|
512 |
+
analysis = f"""## Technical Document Analysis
|
513 |
+
|
514 |
+
**Image Properties:**
|
515 |
+
- Dimensions: {width}x{height} pixels
|
516 |
+
- Format: {format}
|
517 |
+
- Color Mode: {mode}
|
518 |
+
|
519 |
+
**Technical Analysis:**
|
520 |
+
1. Document Quality:
|
521 |
+
- Resolution: {'High' if width > 2000 or height > 2000 else 'Medium' if width > 1000 or height > 1000 else 'Low'}
|
522 |
+
- Color Depth: {mode}
|
523 |
+
|
524 |
+
2. Recommendations:
|
525 |
+
- For text extraction, consider using PDF format
|
526 |
+
- For technical diagrams, ensure high resolution
|
527 |
+
- Consider OCR for text content
|
528 |
+
|
529 |
+
**Note:** For detailed technical analysis, please convert to PDF format
|
530 |
+
"""
|
531 |
+
return analysis
|
532 |
+
except Exception as e:
|
533 |
+
return f"Error analyzing image: {str(e)}\n\nPlease try using PDF format instead."
|
534 |
+
|
535 |
+
# Function to handle different file types
|
536 |
+
def process_file(file_data, file_type):
|
537 |
+
if file_data is None:
|
538 |
+
return None, "No file uploaded", None
|
539 |
+
|
540 |
+
if file_type == "pdf":
|
541 |
+
return process_pdf(file_data)
|
542 |
+
elif file_type == "excel":
|
543 |
+
return process_excel(file_data)
|
544 |
+
elif file_type == "image":
|
545 |
+
# For image files, we'll just use them directly for analysis
|
546 |
+
# But we'll return a session ID to maintain consistency
|
547 |
+
session_id = str(uuid.uuid4())
|
548 |
+
return session_id, "β
Image file ready for analysis", None
|
549 |
+
else:
|
550 |
+
return None, "Unsupported file type", None
|
551 |
+
|
552 |
+
# Function for speech-to-text conversion
|
553 |
+
def speech_to_text():
|
554 |
+
try:
|
555 |
+
r = sr.Recognizer()
|
556 |
+
with sr.Microphone() as source:
|
557 |
+
r.adjust_for_ambient_noise(source)
|
558 |
+
audio = r.listen(source)
|
559 |
+
text = r.recognize_google(audio)
|
560 |
+
return text
|
561 |
+
except sr.UnknownValueError:
|
562 |
+
return "Could not understand audio. Please try again."
|
563 |
+
except sr.RequestError as e:
|
564 |
+
return f"Error with speech recognition service: {e}"
|
565 |
+
except Exception as e:
|
566 |
+
return f"Error converting speech to text: {str(e)}"
|
567 |
+
|
568 |
+
# Function for text-to-speech conversion
|
569 |
+
def text_to_speech(text, history):
|
570 |
+
if not text or not history:
|
571 |
+
return None
|
572 |
+
|
573 |
+
try:
|
574 |
+
# Get the last bot response
|
575 |
+
last_response = history[-1][1]
|
576 |
+
|
577 |
+
# Convert text to speech
|
578 |
+
tts = pyttsx3.init()
|
579 |
+
tts.setProperty('rate', 150)
|
580 |
+
tts.setProperty('volume', 0.9)
|
581 |
+
tts.save_to_file(last_response, "temp_output.mp3")
|
582 |
+
tts.runAndWait()
|
583 |
+
|
584 |
+
return "temp_output.mp3"
|
585 |
+
except Exception as e:
|
586 |
+
print(f"Error in text-to-speech: {e}")
|
587 |
+
return None
|
588 |
+
|
589 |
# Function to generate chatbot responses with Tech theme
|
590 |
+
def generate_response(message, session_id, model_name, history, web_search_enabled=True):
|
591 |
if not message:
|
592 |
return history
|
593 |
try:
|
|
|
598 |
if docs:
|
599 |
context = "\n\nRelevant information from uploaded PDF:\n" + "\n".join(f"- {doc.page_content}" for doc in docs)
|
600 |
|
601 |
+
# Check if it's a GitHub repo search and web search is enabled
|
602 |
+
if web_search_enabled and re.match(r'^/github\s+.+', message, re.IGNORECASE):
|
603 |
query = re.sub(r'^/github\s+', '', message, flags=re.IGNORECASE)
|
604 |
repo_results = search_github_repos(query)
|
605 |
if repo_results:
|
|
|
616 |
history.append((message, "No GitHub repositories found for your query."))
|
617 |
return history
|
618 |
|
619 |
+
# Check if it's a Stack Overflow search and web search is enabled
|
620 |
+
if web_search_enabled and re.match(r'^/stack\s+.+', message, re.IGNORECASE):
|
621 |
query = re.sub(r'^/stack\s+', '', message, flags=re.IGNORECASE)
|
622 |
qa_results = search_stackoverflow(query)
|
623 |
if qa_results:
|
|
|
910 |
except Exception as e:
|
911 |
return f"Error searching Stack Overflow: {str(e)}"
|
912 |
|
913 |
+
def detect_language(file_extension):
|
914 |
+
"""Map file extensions to programming languages"""
|
915 |
+
language_map = {
|
916 |
+
".py": "Python",
|
917 |
+
".js": "JavaScript",
|
918 |
+
".java": "Java",
|
919 |
+
".cpp": "C++",
|
920 |
+
".c": "C",
|
921 |
+
".cs": "C#",
|
922 |
+
".php": "PHP",
|
923 |
+
".rb": "Ruby",
|
924 |
+
".go": "Go",
|
925 |
+
".rs": "Rust",
|
926 |
+
".swift": "Swift",
|
927 |
+
".kt": "Kotlin",
|
928 |
+
".ts": "TypeScript",
|
929 |
+
".html": "HTML",
|
930 |
+
".css": "CSS",
|
931 |
+
".sql": "SQL",
|
932 |
+
".r": "R",
|
933 |
+
".m": "Objective-C/MATLAB",
|
934 |
+
".h": "C/C++ Header",
|
935 |
+
".hpp": "C++ Header",
|
936 |
+
".jsx": "React JSX",
|
937 |
+
".tsx": "React TSX",
|
938 |
+
".vue": "Vue.js",
|
939 |
+
".scala": "Scala",
|
940 |
+
".pl": "Perl",
|
941 |
+
".sh": "Shell Script",
|
942 |
+
".bash": "Bash Script",
|
943 |
+
".ps1": "PowerShell",
|
944 |
+
".yaml": "YAML",
|
945 |
+
".yml": "YAML",
|
946 |
+
".json": "JSON",
|
947 |
+
".xml": "XML",
|
948 |
+
".toml": "TOML",
|
949 |
+
".ini": "INI"
|
950 |
+
}
|
951 |
+
return language_map.get(file_extension.lower(), "Unknown")
|
952 |
+
|
953 |
+
def analyze_code(code_file):
|
954 |
+
"""Analyze code files and provide insights"""
|
955 |
+
if code_file is None:
|
956 |
+
return "No file uploaded. Please upload a code file to analyze."
|
957 |
+
|
958 |
+
try:
|
959 |
+
# Get file extension
|
960 |
+
file_extension = os.path.splitext(code_file.name)[1]
|
961 |
+
language = detect_language(file_extension)
|
962 |
+
|
963 |
+
# Read the file content
|
964 |
+
content = code_file.read().decode('utf-8', errors='ignore')
|
965 |
+
|
966 |
+
# Basic code metrics
|
967 |
+
total_lines = len(content.splitlines())
|
968 |
+
blank_lines = len([line for line in content.splitlines() if not line.strip()])
|
969 |
+
code_lines = total_lines - blank_lines
|
970 |
+
|
971 |
+
# Calculate complexity metrics
|
972 |
+
complexity_metrics = calculate_complexity(content, language)
|
973 |
+
|
974 |
+
# Generate analysis using LLM
|
975 |
+
analysis_prompt = f"""Analyze this {language} code and provide insights about:
|
976 |
+
1. Code structure and organization
|
977 |
+
2. Potential improvements or best practices
|
978 |
+
3. Security considerations
|
979 |
+
4. Performance implications
|
980 |
+
5. Maintainability factors
|
981 |
+
|
982 |
+
Code metrics:
|
983 |
+
- Total lines: {total_lines}
|
984 |
+
- Code lines: {code_lines}
|
985 |
+
- Blank lines: {blank_lines}
|
986 |
+
{complexity_metrics}
|
987 |
+
|
988 |
+
First 1000 characters of code:
|
989 |
+
{content[:1000]}...
|
990 |
+
"""
|
991 |
+
|
992 |
+
completion = client.chat.completions.create(
|
993 |
+
model="llama3-70b-8192",
|
994 |
+
messages=[
|
995 |
+
{"role": "system", "content": "You are an expert code reviewer and technical architect."},
|
996 |
+
{"role": "user", "content": analysis_prompt}
|
997 |
+
],
|
998 |
+
temperature=0.3,
|
999 |
+
max_tokens=1500
|
1000 |
+
)
|
1001 |
+
|
1002 |
+
# Format the analysis
|
1003 |
+
analysis = f"""## Code Analysis Report
|
1004 |
+
|
1005 |
+
**File Type:** {language}
|
1006 |
+
|
1007 |
+
### Code Metrics
|
1008 |
+
- Total Lines: {total_lines}
|
1009 |
+
- Code Lines: {code_lines}
|
1010 |
+
- Blank Lines: {blank_lines}
|
1011 |
+
|
1012 |
+
### Complexity Analysis
|
1013 |
+
{complexity_metrics}
|
1014 |
+
|
1015 |
+
### Expert Analysis
|
1016 |
+
{completion.choices[0].message.content}
|
1017 |
+
|
1018 |
+
### Recommendations
|
1019 |
+
1. Consider using a linter specific to {language}
|
1020 |
+
2. Review the security considerations mentioned above
|
1021 |
+
3. Consider automated testing to validate the code
|
1022 |
+
4. Document any complex algorithms or business logic
|
1023 |
+
"""
|
1024 |
+
return analysis
|
1025 |
+
|
1026 |
+
except Exception as e:
|
1027 |
+
return f"Error analyzing code: {str(e)}\n\nPlease ensure the file is properly formatted and encoded."
|
1028 |
+
|
1029 |
+
def calculate_complexity(content, language):
|
1030 |
+
"""Calculate various complexity metrics based on the language"""
|
1031 |
+
try:
|
1032 |
+
# Count function/method definitions
|
1033 |
+
function_patterns = {
|
1034 |
+
"Python": r"def\s+\w+\s*\(",
|
1035 |
+
"JavaScript": r"function\s+\w+\s*\(|const\s+\w+\s*=\s*\([^)]*\)\s*=>",
|
1036 |
+
"Java": r"(public|private|protected)?\s*\w+\s+\w+\s*\([^)]*\)\s*\{",
|
1037 |
+
"C++": r"\w+\s+\w+\s*\([^)]*\)\s*\{",
|
1038 |
+
}
|
1039 |
+
|
1040 |
+
pattern = function_patterns.get(language, r"\w+\s+\w+\s*\([^)]*\)")
|
1041 |
+
function_count = len(re.findall(pattern, content))
|
1042 |
+
|
1043 |
+
# Calculate cyclomatic complexity (rough estimate)
|
1044 |
+
decision_patterns = [
|
1045 |
+
r"\bif\b",
|
1046 |
+
r"\bwhile\b",
|
1047 |
+
r"\bfor\b",
|
1048 |
+
r"\bcase\b",
|
1049 |
+
r"\bcatch\b",
|
1050 |
+
r"\b&&\b",
|
1051 |
+
r"\b\|\|\b"
|
1052 |
+
]
|
1053 |
+
|
1054 |
+
decision_points = sum(len(re.findall(p, content)) for p in decision_patterns)
|
1055 |
+
|
1056 |
+
# Estimate maintainability
|
1057 |
+
avg_line_length = sum(len(line) for line in content.splitlines()) / len(content.splitlines()) if content.splitlines() else 0
|
1058 |
+
|
1059 |
+
return f"""**Complexity Metrics:**
|
1060 |
+
- Estimated Function Count: {function_count}
|
1061 |
+
- Decision Points: {decision_points}
|
1062 |
+
- Average Line Length: {avg_line_length:.2f} characters
|
1063 |
+
- Cyclomatic Complexity Estimate: {decision_points + 1}
|
1064 |
+
"""
|
1065 |
+
except Exception as e:
|
1066 |
+
return f"Error calculating complexity: {str(e)}"
|
1067 |
+
|
1068 |
+
def update_status_with_animation(status):
|
1069 |
+
return f"""
|
1070 |
+
<div class="status-message">
|
1071 |
+
<div class="loading-container">
|
1072 |
+
<div class="loading-bar"></div>
|
1073 |
+
</div>
|
1074 |
+
> {status}
|
1075 |
+
</div>
|
1076 |
+
"""
|
1077 |
+
|
1078 |
+
# Update the analysis results display
|
1079 |
+
def format_analysis_results(analysis):
|
1080 |
+
return f"""
|
1081 |
+
<div class="analysis-container">
|
1082 |
+
<div class="analysis-header">> ANALYSIS COMPLETE</div>
|
1083 |
+
{analysis}
|
1084 |
+
<div class="loading-container">
|
1085 |
+
<div class="loading-bar"></div>
|
1086 |
+
</div>
|
1087 |
+
</div>
|
1088 |
+
"""
|
1089 |
+
|
1090 |
+
def format_code_metrics(metrics):
|
1091 |
+
return f"""
|
1092 |
+
<div class="metric-card">
|
1093 |
+
<div style="color: var(--neon-yellow);">SYSTEM METRICS</div>
|
1094 |
+
<div style="margin-top: 10px;">
|
1095 |
+
{metrics}
|
1096 |
+
</div>
|
1097 |
+
</div>
|
1098 |
+
"""
|
1099 |
+
|
1100 |
+
# Add cyberpunk UI sound effects
|
1101 |
+
def play_interface_sound(sound_type):
|
1102 |
+
sounds = {
|
1103 |
+
"hover": "hover.mp3",
|
1104 |
+
"click": "click.mp3",
|
1105 |
+
"success": "success.mp3",
|
1106 |
+
"error": "error.mp3"
|
1107 |
+
}
|
1108 |
+
return gr.Audio(value=sounds.get(sound_type), autoplay=True, visible=False)
|
1109 |
+
|
1110 |
+
# Create the Gradio interface with advanced cyberpunk styling
|
1111 |
+
def create_cyberpunk_interface():
|
1112 |
+
css = compile_scss()
|
1113 |
+
|
1114 |
+
with gr.Blocks(css=css, head=NEURAL_JS) as demo:
|
1115 |
current_session_id = gr.State(None)
|
1116 |
pdf_state = gr.State({"page_images": [], "total_pages": 0, "total_words": 0})
|
1117 |
+
excel_state = gr.State({"data_preview": "", "total_sheets": 0, "total_rows": 0})
|
1118 |
+
file_type = gr.State("none")
|
1119 |
+
audio_status = gr.State("Ready")
|
1120 |
+
|
1121 |
gr.HTML("""
|
1122 |
+
<div class="neural-interface">
|
1123 |
+
<div class="neural-interface__header">TECH-VISION_v3.0</div>
|
1124 |
+
<div class="neural-status">
|
1125 |
+
<div class="neural-status__indicator"></div>
|
1126 |
+
<div class="neural-status__text">SYSTEM ONLINE</div>
|
1127 |
+
</div>
|
1128 |
</div>
|
1129 |
""")
|
1130 |
+
with gr.Row(elem_classes="neural-grid"):
|
1131 |
with gr.Column(scale=1, min_width=300):
|
1132 |
+
with gr.Tabs():
|
1133 |
+
with gr.TabItem("[SYS:SCAN] Code Analysis"):
|
1134 |
+
gr.HTML("""
|
1135 |
+
<div class="upload-container">
|
1136 |
+
<div style="color: var(--neon-blue); margin-bottom: 10px;">
|
1137 |
+
> INITIATE CODE SCAN
|
1138 |
+
</div>
|
1139 |
+
""")
|
1140 |
+
code_file = gr.File(
|
1141 |
+
label="UPLOAD SOURCE CODE",
|
1142 |
+
file_types=[".py", ".js", ".java", ".cpp", ".c", ".cs", ".php", ".rb",
|
1143 |
+
".go", ".rs", ".swift", ".kt", ".ts", ".html", ".css",
|
1144 |
+
".sql", ".r", ".m", ".h", ".hpp", ".jsx", ".tsx",
|
1145 |
+
".vue", ".scala", ".pl", ".sh", ".bash", ".ps1",
|
1146 |
+
".yaml", ".yml", ".json", ".xml", ".toml", ".ini"],
|
1147 |
+
type="binary"
|
1148 |
+
)
|
1149 |
+
gr.HTML("</div>")
|
1150 |
+
code_analyze_btn = gr.Button("INITIATE ANALYSIS", elem_classes="primary-btn")
|
1151 |
+
|
1152 |
+
with gr.TabItem("PDF"):
|
1153 |
+
pdf_file = gr.File(label="Upload PDF Document", file_types=[".pdf"], type="binary")
|
1154 |
+
pdf_upload_button = gr.Button("Process PDF", variant="primary")
|
1155 |
+
|
1156 |
+
with gr.TabItem("Excel"):
|
1157 |
+
excel_file = gr.File(label="Upload Excel File", file_types=[".xlsx", ".xls"], type="binary")
|
1158 |
+
excel_upload_button = gr.Button("Process Excel", variant="primary")
|
1159 |
+
|
1160 |
+
with gr.TabItem("Image"):
|
1161 |
+
image_input = gr.File(
|
1162 |
+
label="Upload Image",
|
1163 |
+
file_types=["image"],
|
1164 |
+
type="filepath"
|
1165 |
+
)
|
1166 |
+
analyze_btn = gr.Button("Analyze Image")
|
1167 |
+
|
1168 |
+
file_status = gr.Markdown("No file uploaded yet")
|
1169 |
+
|
1170 |
+
# Model selector
|
1171 |
model_dropdown = gr.Dropdown(
|
1172 |
choices=["llama3-70b-8192", "llama3-8b-8192", "mixtral-8x7b-32768", "gemma-7b-it"],
|
1173 |
value="llama3-70b-8192",
|
1174 |
label="Select Groq Model"
|
1175 |
)
|
1176 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1177 |
with gr.Column(scale=2, min_width=600):
|
1178 |
with gr.Tabs():
|
1179 |
with gr.TabItem("PDF Viewer"):
|
1180 |
with gr.Column(elem_classes="pdf-viewer-container"):
|
1181 |
page_slider = gr.Slider(minimum=1, maximum=1, step=1, label="Page Number", value=1)
|
1182 |
pdf_image = gr.Image(label="PDF Page", type="pil", elem_classes="pdf-viewer-image")
|
1183 |
+
pdf_stats = gr.Markdown("No PDF uploaded yet", elem_classes="stats-box")
|
1184 |
|
1185 |
+
with gr.TabItem("Excel Viewer"):
|
1186 |
+
excel_preview = gr.HTML(label="Excel Preview", elem_classes="file-preview")
|
1187 |
+
excel_stats = gr.Markdown("No Excel file uploaded yet", elem_classes="stats-box")
|
1188 |
|
1189 |
+
with gr.TabItem("Image Analysis"):
|
1190 |
+
image_preview = gr.Image(label="Image Preview", type="pil")
|
1191 |
+
image_analysis_results = gr.Markdown("Upload an image and click 'Analyze Image' to see analysis results")
|
1192 |
+
|
1193 |
+
with gr.TabItem("Code Analysis Results"):
|
1194 |
+
analysis_results = gr.Markdown("Upload a code file and click 'Analyze Code' to see analysis results")
|
1195 |
+
with gr.Row():
|
1196 |
+
copy_btn = gr.Button("π Copy Analysis")
|
1197 |
+
export_btn = gr.Button("π₯ Export Report")
|
1198 |
+
|
1199 |
+
# Audio visualization elements
|
1200 |
+
with gr.Row(elem_classes="container"):
|
1201 |
+
with gr.Column():
|
1202 |
+
audio_vis = gr.HTML("""
|
1203 |
+
<div class="audio-visualization">
|
1204 |
+
<div class="audio-bar" style="height: 5px;"></div>
|
1205 |
+
<div class="audio-bar" style="height: 12px;"></div>
|
1206 |
+
<div class="audio-bar" style="height: 18px;"></div>
|
1207 |
+
<div class="audio-bar" style="height: 15px;"></div>
|
1208 |
+
<div class="audio-bar" style="height: 10px;"></div>
|
1209 |
+
<div class="audio-bar" style="height: 20px;"></div>
|
1210 |
+
<div class="audio-bar" style="height: 14px;"></div>
|
1211 |
+
<div class="audio-bar" style="height: 8px;"></div>
|
1212 |
+
</div>
|
1213 |
+
""", visible=False)
|
1214 |
+
audio_status_display = gr.Markdown("", elem_classes="audio-status")
|
1215 |
|
1216 |
+
# Chat interface
|
1217 |
with gr.Row(elem_classes="container"):
|
1218 |
with gr.Column(scale=2, min_width=600):
|
1219 |
+
chatbot = gr.Chatbot(
|
1220 |
+
height=400,
|
1221 |
+
show_copy_button=True,
|
1222 |
+
elem_classes="chat-container",
|
1223 |
+
type="messages" # Use the new messages format
|
1224 |
+
)
|
1225 |
with gr.Row():
|
1226 |
+
msg = gr.Textbox(
|
1227 |
+
show_label=False,
|
1228 |
+
placeholder="Ask about your document or click the microphone to speak...",
|
1229 |
+
scale=5
|
1230 |
+
)
|
1231 |
+
voice_btn = gr.Button("π€", elem_classes="voice-btn")
|
1232 |
send_btn = gr.Button("Send", scale=1)
|
1233 |
+
|
1234 |
+
with gr.Row(elem_classes="audio-controls"):
|
1235 |
+
clear_btn = gr.Button("Clear Conversation")
|
1236 |
+
speak_btn = gr.Button("π Speak Response", elem_classes="speak-btn")
|
1237 |
+
audio_player = gr.Audio(label="Response Audio", type="filepath", visible=False)
|
1238 |
|
1239 |
+
# Event Handlers for PDF processing
|
1240 |
+
pdf_upload_button.click(
|
1241 |
+
lambda x: ("pdf", x),
|
1242 |
+
inputs=[pdf_file],
|
1243 |
+
outputs=[file_type, file_status]
|
1244 |
+
).then(
|
1245 |
process_pdf,
|
1246 |
inputs=[pdf_file],
|
1247 |
+
outputs=[current_session_id, file_status, pdf_state]
|
1248 |
).then(
|
1249 |
update_pdf_viewer,
|
1250 |
inputs=[pdf_state],
|
1251 |
+
outputs=[page_slider, pdf_image, pdf_stats]
|
1252 |
)
|
1253 |
|
1254 |
+
# Event Handlers for Excel processing
|
1255 |
+
def update_excel_preview(state):
|
1256 |
+
if not state:
|
1257 |
+
return "", "No Excel file uploaded yet"
|
1258 |
+
preview = state.get("data_preview", "")
|
1259 |
+
sheets = state.get("total_sheets", 0)
|
1260 |
+
rows = state.get("total_rows", 0)
|
1261 |
+
stats = f"**Excel Statistics:**\nSheets: {sheets}\nTotal Rows: {rows}"
|
1262 |
+
return preview, stats
|
1263 |
+
|
1264 |
+
excel_upload_button.click(
|
1265 |
+
lambda x: ("excel", x),
|
1266 |
+
inputs=[excel_file],
|
1267 |
+
outputs=[file_type, file_status]
|
1268 |
+
).then(
|
1269 |
+
process_excel,
|
1270 |
+
inputs=[excel_file],
|
1271 |
+
outputs=[current_session_id, file_status, excel_state]
|
1272 |
+
).then(
|
1273 |
+
update_excel_preview,
|
1274 |
+
inputs=[excel_state],
|
1275 |
+
outputs=[excel_preview, excel_stats]
|
1276 |
+
)
|
1277 |
+
|
1278 |
+
# Event Handlers for Image Analysis
|
1279 |
+
analyze_btn.click(
|
1280 |
+
lambda x: ("image", x),
|
1281 |
+
inputs=[image_input],
|
1282 |
+
outputs=[file_type, file_status]
|
1283 |
+
).then(
|
1284 |
+
analyze_image,
|
1285 |
+
inputs=[image_input],
|
1286 |
+
outputs=[image_analysis_results]
|
1287 |
+
).then(
|
1288 |
+
lambda x: Image.open(x) if x else None,
|
1289 |
+
inputs=[image_input],
|
1290 |
+
outputs=[image_preview]
|
1291 |
+
)
|
1292 |
+
|
1293 |
+
# Event Handlers for Code Analysis
|
1294 |
+
code_analyze_btn.click(
|
1295 |
+
update_status_with_animation,
|
1296 |
+
inputs=[],
|
1297 |
+
outputs=[file_status]
|
1298 |
+
).then(
|
1299 |
+
analyze_code,
|
1300 |
+
inputs=[code_file],
|
1301 |
+
outputs=[analysis_results]
|
1302 |
+
).then(
|
1303 |
+
format_analysis_results,
|
1304 |
+
inputs=[analysis_results],
|
1305 |
+
outputs=[analysis_results]
|
1306 |
+
)
|
1307 |
+
|
1308 |
+
# Chat message handling
|
1309 |
msg.submit(
|
1310 |
generate_response,
|
1311 |
inputs=[msg, current_session_id, model_dropdown, chatbot],
|
|
|
1318 |
outputs=[chatbot]
|
1319 |
).then(lambda: "", None, [msg])
|
1320 |
|
1321 |
+
# Improved speech-to-text with visual feedback
|
1322 |
+
voice_btn.click(
|
1323 |
+
speech_to_text,
|
1324 |
+
inputs=[audio_status],
|
1325 |
+
outputs=[audio_status_display, audio_vis, msg]
|
1326 |
)
|
1327 |
|
1328 |
+
# Improved text-to-speech with visual feedback
|
1329 |
+
speak_btn.click(
|
1330 |
+
text_to_speech,
|
1331 |
+
inputs=[audio_status, chatbot],
|
1332 |
+
outputs=[audio_status_display, audio_vis, audio_player]
|
1333 |
+
).then(
|
1334 |
+
lambda x: gr.update(visible=True) if x else gr.update(visible=False),
|
1335 |
+
inputs=[audio_player],
|
1336 |
+
outputs=[audio_player]
|
1337 |
+
)
|
1338 |
+
|
1339 |
+
# Page navigation for PDF
|
1340 |
page_slider.change(
|
1341 |
update_image,
|
1342 |
inputs=[page_slider, pdf_state],
|
1343 |
outputs=[pdf_image]
|
1344 |
)
|
1345 |
|
1346 |
+
# Clear conversation and reset UI
|
1347 |
+
clear_btn.click(
|
1348 |
+
lambda: (
|
1349 |
+
[], None, "No file uploaded yet",
|
1350 |
+
{"page_images": [], "total_pages": 0, "total_words": 0},
|
1351 |
+
{"data_preview": "", "total_sheets": 0, "total_rows": 0},
|
1352 |
+
"none", 0, None, "No PDF uploaded yet", "",
|
1353 |
+
"No Excel file uploaded yet", None,
|
1354 |
+
"Upload an image and click 'Analyze Image' to see results", None,
|
1355 |
+
gr.update(visible=False), "Ready"
|
1356 |
+
),
|
1357 |
+
None,
|
1358 |
+
[chatbot, current_session_id, file_status, pdf_state, excel_state,
|
1359 |
+
file_type, page_slider, pdf_image, pdf_stats, excel_preview,
|
1360 |
+
excel_stats, image_preview, image_analysis_results, audio_player,
|
1361 |
+
audio_vis, audio_status_display]
|
|
|
1362 |
)
|
1363 |
|
1364 |
+
# Add footer with creator attribution
|
1365 |
+
gr.HTML("""
|
1366 |
+
<div style="text-align: center; margin-top: 20px; padding: 10px; color: #666; font-size: 0.8rem; border-top: 1px solid #eee;">
|
1367 |
+
Created by Calvin Allen Crawford
|
1368 |
+
</div>
|
1369 |
+
""")
|
1370 |
+
|
1371 |
+
return demo
|
1372 |
|
1373 |
# Launch the app
|
1374 |
if __name__ == "__main__":
|
1375 |
+
demo = create_cyberpunk_interface()
|
1376 |
demo.launch()
|