Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,21 +1,35 @@
|
|
| 1 |
-
|
| 2 |
-
import groq
|
| 3 |
import os
|
| 4 |
import tempfile
|
| 5 |
import uuid
|
| 6 |
-
from dotenv import load_dotenv
|
| 7 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 8 |
-
from langchain.vectorstores import FAISS
|
| 9 |
-
from langchain.embeddings import HuggingFaceEmbeddings
|
| 10 |
-
import fitz # PyMuPDF
|
| 11 |
import base64
|
| 12 |
-
from PIL import Image
|
| 13 |
import io
|
| 14 |
-
import requests
|
| 15 |
import json
|
| 16 |
import re
|
| 17 |
from datetime import datetime, timedelta
|
| 18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
# Load environment variables
|
| 20 |
load_dotenv()
|
| 21 |
client = groq.Client(api_key=os.getenv("GROQ_TECH_API_KEY"))
|
|
@@ -29,47 +43,371 @@ if not os.path.exists(FAISS_INDEX_DIR):
|
|
| 29 |
# Dictionary to store user-specific vectorstores
|
| 30 |
user_vectorstores = {}
|
| 31 |
|
| 32 |
-
#
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
}
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
.
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
.
|
| 62 |
-
.
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
.
|
| 67 |
-
.
|
| 68 |
-
.
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
"""
|
| 74 |
|
| 75 |
# Function to process PDF files
|
|
@@ -109,8 +447,147 @@ def process_pdf(pdf_file):
|
|
| 109 |
os.unlink(pdf_path)
|
| 110 |
return None, f"Error processing PDF: {str(e)}", {"page_images": [], "total_pages": 0, "total_words": 0}
|
| 111 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
# Function to generate chatbot responses with Tech theme
|
| 113 |
-
def generate_response(message, session_id, model_name, history):
|
| 114 |
if not message:
|
| 115 |
return history
|
| 116 |
try:
|
|
@@ -121,8 +598,8 @@ def generate_response(message, session_id, model_name, history):
|
|
| 121 |
if docs:
|
| 122 |
context = "\n\nRelevant information from uploaded PDF:\n" + "\n".join(f"- {doc.page_content}" for doc in docs)
|
| 123 |
|
| 124 |
-
# Check if it's a GitHub repo search
|
| 125 |
-
if re.match(r'^/github\s+.+', message, re.IGNORECASE):
|
| 126 |
query = re.sub(r'^/github\s+', '', message, flags=re.IGNORECASE)
|
| 127 |
repo_results = search_github_repos(query)
|
| 128 |
if repo_results:
|
|
@@ -139,8 +616,8 @@ def generate_response(message, session_id, model_name, history):
|
|
| 139 |
history.append((message, "No GitHub repositories found for your query."))
|
| 140 |
return history
|
| 141 |
|
| 142 |
-
# Check if it's a Stack Overflow search
|
| 143 |
-
if re.match(r'^/stack\s+.+', message, re.IGNORECASE):
|
| 144 |
query = re.sub(r'^/stack\s+', '', message, flags=re.IGNORECASE)
|
| 145 |
qa_results = search_stackoverflow(query)
|
| 146 |
if qa_results:
|
|
@@ -433,110 +910,402 @@ def perform_stack_search(query, tag, sort_by):
|
|
| 433 |
except Exception as e:
|
| 434 |
return f"Error searching Stack Overflow: {str(e)}"
|
| 435 |
|
| 436 |
-
|
| 437 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 438 |
current_session_id = gr.State(None)
|
| 439 |
pdf_state = gr.State({"page_images": [], "total_pages": 0, "total_words": 0})
|
|
|
|
|
|
|
|
|
|
|
|
|
| 440 |
gr.HTML("""
|
| 441 |
-
|
| 442 |
-
|
| 443 |
-
|
|
|
|
|
|
|
|
|
|
| 444 |
</div>
|
| 445 |
""")
|
| 446 |
-
|
| 447 |
with gr.Column(scale=1, min_width=300):
|
| 448 |
-
|
| 449 |
-
|
| 450 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 451 |
model_dropdown = gr.Dropdown(
|
| 452 |
choices=["llama3-70b-8192", "llama3-8b-8192", "mixtral-8x7b-32768", "gemma-7b-it"],
|
| 453 |
value="llama3-70b-8192",
|
| 454 |
label="Select Groq Model"
|
| 455 |
)
|
| 456 |
-
|
| 457 |
-
# Tech Tools Section
|
| 458 |
-
gr.Markdown("### Developer Tools", elem_classes="tool-title")
|
| 459 |
-
with gr.Group(elem_classes="tool-container"):
|
| 460 |
-
with gr.Tabs():
|
| 461 |
-
with gr.TabItem("GitHub Search"):
|
| 462 |
-
repo_query = gr.Textbox(label="Search Query", placeholder="Enter keywords to search for repositories")
|
| 463 |
-
with gr.Row():
|
| 464 |
-
language = gr.Dropdown(
|
| 465 |
-
choices=["any", "JavaScript", "Python", "Java", "C++", "TypeScript", "Go", "Rust", "PHP", "C#"],
|
| 466 |
-
value="any",
|
| 467 |
-
label="Language"
|
| 468 |
-
)
|
| 469 |
-
min_stars = gr.Dropdown(
|
| 470 |
-
choices=["0", "10", "50", "100", "1000", "10000"],
|
| 471 |
-
value="0",
|
| 472 |
-
label="Min Stars"
|
| 473 |
-
)
|
| 474 |
-
sort_by = gr.Dropdown(
|
| 475 |
-
choices=["stars", "forks", "updated"],
|
| 476 |
-
value="stars",
|
| 477 |
-
label="Sort By"
|
| 478 |
-
)
|
| 479 |
-
repo_search_btn = gr.Button("Search Repositories")
|
| 480 |
-
|
| 481 |
-
with gr.TabItem("Stack Overflow"):
|
| 482 |
-
stack_query = gr.Textbox(label="Search Query", placeholder="Enter your technical question")
|
| 483 |
-
with gr.Row():
|
| 484 |
-
tag = gr.Dropdown(
|
| 485 |
-
choices=["any", "python", "javascript", "java", "c++", "react", "node.js", "android", "ios", "sql"],
|
| 486 |
-
value="any",
|
| 487 |
-
label="Tag"
|
| 488 |
-
)
|
| 489 |
-
so_sort_by = gr.Dropdown(
|
| 490 |
-
choices=["votes", "newest", "activity"],
|
| 491 |
-
value="votes",
|
| 492 |
-
label="Sort By"
|
| 493 |
-
)
|
| 494 |
-
so_search_btn = gr.Button("Search Stack Overflow")
|
| 495 |
-
|
| 496 |
-
with gr.TabItem("Code Explainer"):
|
| 497 |
-
code_input = gr.Textbox(
|
| 498 |
-
label="Code to Explain",
|
| 499 |
-
placeholder="Paste your code here...",
|
| 500 |
-
lines=10
|
| 501 |
-
)
|
| 502 |
-
explain_btn = gr.Button("Explain Code")
|
| 503 |
-
|
| 504 |
with gr.Column(scale=2, min_width=600):
|
| 505 |
with gr.Tabs():
|
| 506 |
with gr.TabItem("PDF Viewer"):
|
| 507 |
with gr.Column(elem_classes="pdf-viewer-container"):
|
| 508 |
page_slider = gr.Slider(minimum=1, maximum=1, step=1, label="Page Number", value=1)
|
| 509 |
pdf_image = gr.Image(label="PDF Page", type="pil", elem_classes="pdf-viewer-image")
|
| 510 |
-
|
| 511 |
|
| 512 |
-
with gr.TabItem("
|
| 513 |
-
|
|
|
|
| 514 |
|
| 515 |
-
with gr.TabItem("
|
| 516 |
-
|
| 517 |
-
|
| 518 |
-
|
| 519 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 520 |
|
|
|
|
| 521 |
with gr.Row(elem_classes="container"):
|
| 522 |
with gr.Column(scale=2, min_width=600):
|
| 523 |
-
chatbot = gr.Chatbot(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 524 |
with gr.Row():
|
| 525 |
-
msg = gr.Textbox(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 526 |
send_btn = gr.Button("Send", scale=1)
|
| 527 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 528 |
|
| 529 |
-
# Event Handlers
|
| 530 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 531 |
process_pdf,
|
| 532 |
inputs=[pdf_file],
|
| 533 |
-
outputs=[current_session_id,
|
| 534 |
).then(
|
| 535 |
update_pdf_viewer,
|
| 536 |
inputs=[pdf_state],
|
| 537 |
-
outputs=[page_slider, pdf_image,
|
| 538 |
)
|
| 539 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 540 |
msg.submit(
|
| 541 |
generate_response,
|
| 542 |
inputs=[msg, current_session_id, model_dropdown, chatbot],
|
|
@@ -549,44 +1318,59 @@ with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
|
|
| 549 |
outputs=[chatbot]
|
| 550 |
).then(lambda: "", None, [msg])
|
| 551 |
|
| 552 |
-
|
| 553 |
-
|
| 554 |
-
|
| 555 |
-
[
|
|
|
|
| 556 |
)
|
| 557 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 558 |
page_slider.change(
|
| 559 |
update_image,
|
| 560 |
inputs=[page_slider, pdf_state],
|
| 561 |
outputs=[pdf_image]
|
| 562 |
)
|
| 563 |
|
| 564 |
-
#
|
| 565 |
-
|
| 566 |
-
|
| 567 |
-
|
| 568 |
-
|
| 569 |
-
|
| 570 |
-
|
| 571 |
-
|
| 572 |
-
|
| 573 |
-
|
| 574 |
-
|
| 575 |
-
|
| 576 |
-
|
| 577 |
-
|
| 578 |
-
|
| 579 |
-
|
| 580 |
-
outputs=[code_explanation]
|
| 581 |
)
|
| 582 |
|
| 583 |
-
# Add footer with attribution
|
| 584 |
-
gr.HTML("""
|
| 585 |
-
<div style="text-align: center; margin-top: 20px; padding: 10px; color: #666; font-size: 0.8rem; border-top: 1px solid #eee;">
|
| 586 |
-
|
| 587 |
-
</div>
|
| 588 |
-
""")
|
|
|
|
|
|
|
| 589 |
|
| 590 |
# Launch the app
|
| 591 |
if __name__ == "__main__":
|
|
|
|
| 592 |
demo.launch()
|
|
|
|
| 1 |
+
# Standard library imports
|
|
|
|
| 2 |
import os
|
| 3 |
import tempfile
|
| 4 |
import uuid
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
import base64
|
|
|
|
| 6 |
import io
|
|
|
|
| 7 |
import json
|
| 8 |
import re
|
| 9 |
from datetime import datetime, timedelta
|
| 10 |
|
| 11 |
+
# Third-party imports
|
| 12 |
+
import gradio as gr
|
| 13 |
+
import groq
|
| 14 |
+
import numpy as np
|
| 15 |
+
import pandas as pd
|
| 16 |
+
import openpyxl
|
| 17 |
+
import requests
|
| 18 |
+
import fitz # PyMuPDF
|
| 19 |
+
from PIL import Image
|
| 20 |
+
from dotenv import load_dotenv
|
| 21 |
+
from transformers import AutoProcessor, AutoModelForVision2Seq
|
| 22 |
+
import torch
|
| 23 |
+
import sass
|
| 24 |
+
from pathlib import Path
|
| 25 |
+
import pyttsx3
|
| 26 |
+
import speech_recognition as sr
|
| 27 |
+
|
| 28 |
+
# LangChain imports
|
| 29 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 30 |
+
from langchain_community.vectorstores import FAISS
|
| 31 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 32 |
+
|
| 33 |
# Load environment variables
|
| 34 |
load_dotenv()
|
| 35 |
client = groq.Client(api_key=os.getenv("GROQ_TECH_API_KEY"))
|
|
|
|
| 43 |
# Dictionary to store user-specific vectorstores
|
| 44 |
user_vectorstores = {}
|
| 45 |
|
| 46 |
+
# Advanced SCSS with cyberpunk styling
|
| 47 |
+
CYBERPUNK_SCSS = """
|
| 48 |
+
// Advanced Cyberpunk Theme with Neural Network Aesthetics
|
| 49 |
+
@use "sass:math";
|
| 50 |
+
@use "sass:color";
|
| 51 |
+
|
| 52 |
+
// Neural Color System
|
| 53 |
+
$neural-colors: (
|
| 54 |
+
'synapse-blue': #00F3FF,
|
| 55 |
+
'neural-red': #FF0033,
|
| 56 |
+
'data-yellow': #FFE600,
|
| 57 |
+
'matrix-green': #00FF9F,
|
| 58 |
+
'void-black': #0D0D0D,
|
| 59 |
+
'deep-void': #080808,
|
| 60 |
+
'neural-white': #E6E6E6,
|
| 61 |
+
'grid-alpha': 0.1
|
| 62 |
+
);
|
| 63 |
+
|
| 64 |
+
// Dynamic Color Functions
|
| 65 |
+
@function neural-glow($color, $intensity: 1) {
|
| 66 |
+
$glow-color: map-get($neural-colors, $color);
|
| 67 |
+
@return (
|
| 68 |
+
0 0 #{10px * $intensity} $glow-color,
|
| 69 |
+
0 0 #{20px * $intensity} $glow-color
|
| 70 |
+
);
|
| 71 |
+
}
|
| 72 |
+
|
| 73 |
+
@function generate-glitch-animation($name, $color1, $color2) {
|
| 74 |
+
@keyframes #{$name} {
|
| 75 |
+
0%, 100% {
|
| 76 |
+
text-shadow: -2px 0 map-get($neural-colors, $color1),
|
| 77 |
+
2px 2px map-get($neural-colors, $color2);
|
| 78 |
+
}
|
| 79 |
+
25% {
|
| 80 |
+
text-shadow: 2px -2px map-get($neural-colors, $color1),
|
| 81 |
+
-2px -2px map-get($neural-colors, $color2);
|
| 82 |
+
}
|
| 83 |
+
50% {
|
| 84 |
+
text-shadow: 1px 3px map-get($neural-colors, $color1),
|
| 85 |
+
-3px -1px map-get($neural-colors, $color2);
|
| 86 |
+
}
|
| 87 |
+
75% {
|
| 88 |
+
text-shadow: -3px 1px map-get($neural-colors, $color1),
|
| 89 |
+
1px -1px map-get($neural-colors, $color2);
|
| 90 |
+
}
|
| 91 |
+
}
|
| 92 |
+
}
|
| 93 |
+
|
| 94 |
+
// Generate Multiple Glitch Animations
|
| 95 |
+
#{generate-glitch-animation('neural-glitch', 'synapse-blue', 'neural-red')}
|
| 96 |
+
#{generate-glitch-animation('data-glitch', 'data-yellow', 'matrix-green')}
|
| 97 |
+
|
| 98 |
+
// Advanced Mixins
|
| 99 |
+
@mixin neural-container($depth: 1) {
|
| 100 |
+
background: linear-gradient(
|
| 101 |
+
170deg,
|
| 102 |
+
rgba(map-get($neural-colors, 'deep-void'), 0.9),
|
| 103 |
+
rgba(map-get($neural-colors, 'void-black'), 0.95)
|
| 104 |
+
);
|
| 105 |
+
border: #{$depth}px solid map-get($neural-colors, 'synapse-blue');
|
| 106 |
+
box-shadow: neural-glow('synapse-blue', $depth);
|
| 107 |
+
backdrop-filter: blur(5px);
|
| 108 |
+
position: relative;
|
| 109 |
+
overflow: hidden;
|
| 110 |
+
|
| 111 |
+
&::before {
|
| 112 |
+
content: '';
|
| 113 |
+
position: absolute;
|
| 114 |
+
top: 0;
|
| 115 |
+
left: 0;
|
| 116 |
+
right: 0;
|
| 117 |
+
height: 1px;
|
| 118 |
+
background: linear-gradient(
|
| 119 |
+
90deg,
|
| 120 |
+
transparent,
|
| 121 |
+
map-get($neural-colors, 'synapse-blue'),
|
| 122 |
+
transparent
|
| 123 |
+
);
|
| 124 |
+
animation: neural-scan 2s linear infinite;
|
| 125 |
+
}
|
| 126 |
+
}
|
| 127 |
+
|
| 128 |
+
@mixin cyber-text($size, $color: 'synapse-blue') {
|
| 129 |
+
font-family: 'Orbitron', 'Rajdhani', sans-serif;
|
| 130 |
+
font-size: $size;
|
| 131 |
+
color: map-get($neural-colors, $color);
|
| 132 |
+
text-transform: uppercase;
|
| 133 |
+
letter-spacing: 2px;
|
| 134 |
+
position: relative;
|
| 135 |
+
text-shadow: 0 0 5px map-get($neural-colors, $color);
|
| 136 |
+
}
|
| 137 |
+
|
| 138 |
+
// Advanced Animations
|
| 139 |
+
@keyframes neural-scan {
|
| 140 |
+
0% { transform: translateX(-100%); opacity: 0; }
|
| 141 |
+
50% { opacity: 1; }
|
| 142 |
+
100% { transform: translateX(100%); opacity: 0; }
|
| 143 |
+
}
|
| 144 |
+
|
| 145 |
+
@keyframes data-pulse {
|
| 146 |
+
0%, 100% { opacity: 0.8; transform: scale(1); }
|
| 147 |
+
50% { opacity: 1; transform: scale(1.02); }
|
| 148 |
+
}
|
| 149 |
+
|
| 150 |
+
// Base Styles
|
| 151 |
+
body {
|
| 152 |
+
background-color: map-get($neural-colors, 'void-black');
|
| 153 |
+
background-image:
|
| 154 |
+
linear-gradient(
|
| 155 |
+
rgba(map-get($neural-colors, 'synapse-blue'),
|
| 156 |
+
map-get($neural-colors, 'grid-alpha')) 1px,
|
| 157 |
+
transparent 1px
|
| 158 |
+
),
|
| 159 |
+
linear-gradient(
|
| 160 |
+
90deg,
|
| 161 |
+
rgba(map-get($neural-colors, 'synapse-blue'),
|
| 162 |
+
map-get($neural-colors, 'grid-alpha')) 1px,
|
| 163 |
+
transparent 1px
|
| 164 |
+
);
|
| 165 |
+
background-size: 20px 20px;
|
| 166 |
+
color: map-get($neural-colors, 'neural-white');
|
| 167 |
+
}
|
| 168 |
+
|
| 169 |
+
// Advanced Components
|
| 170 |
+
.neural-interface {
|
| 171 |
+
@include neural-container(2);
|
| 172 |
+
padding: 20px;
|
| 173 |
+
margin: 20px;
|
| 174 |
+
clip-path: polygon(
|
| 175 |
+
0 20px,
|
| 176 |
+
20px 0,
|
| 177 |
+
calc(100% - 20px) 0,
|
| 178 |
+
100% 20px,
|
| 179 |
+
100% calc(100% - 20px),
|
| 180 |
+
calc(100% - 20px) 100%,
|
| 181 |
+
20px 100%,
|
| 182 |
+
0 calc(100% - 20px)
|
| 183 |
+
);
|
| 184 |
+
|
| 185 |
+
&__header {
|
| 186 |
+
@include cyber-text(2rem);
|
| 187 |
+
text-align: center;
|
| 188 |
+
margin-bottom: 20px;
|
| 189 |
+
animation: neural-glitch 5s infinite;
|
| 190 |
+
}
|
| 191 |
+
|
| 192 |
+
&__content {
|
| 193 |
+
position: relative;
|
| 194 |
+
z-index: 1;
|
| 195 |
+
}
|
| 196 |
+
}
|
| 197 |
+
|
| 198 |
+
.data-display {
|
| 199 |
+
@include neural-container(1);
|
| 200 |
+
padding: 15px;
|
| 201 |
+
margin: 10px 0;
|
| 202 |
+
animation: data-pulse 4s infinite;
|
| 203 |
+
|
| 204 |
+
&__label {
|
| 205 |
+
@include cyber-text(0.9rem, 'data-yellow');
|
| 206 |
+
margin-bottom: 5px;
|
| 207 |
+
}
|
| 208 |
+
|
| 209 |
+
&__value {
|
| 210 |
+
@include cyber-text(1.2rem, 'matrix-green');
|
| 211 |
+
}
|
| 212 |
+
}
|
| 213 |
+
|
| 214 |
+
// Interactive Elements
|
| 215 |
+
.neural-button {
|
| 216 |
+
@include neural-container(1);
|
| 217 |
+
padding: 10px 20px;
|
| 218 |
+
cursor: pointer;
|
| 219 |
+
transition: all 0.3s ease;
|
| 220 |
+
|
| 221 |
+
&:hover {
|
| 222 |
+
transform: translateY(-2px) scale(1.02);
|
| 223 |
+
box-shadow: neural-glow('synapse-blue', 2);
|
| 224 |
+
}
|
| 225 |
+
|
| 226 |
+
&:active {
|
| 227 |
+
transform: translateY(1px);
|
| 228 |
+
}
|
| 229 |
+
}
|
| 230 |
+
|
| 231 |
+
// Code Display
|
| 232 |
+
.code-matrix {
|
| 233 |
+
@include neural-container(1);
|
| 234 |
+
font-family: 'Source Code Pro', monospace;
|
| 235 |
+
padding: 20px;
|
| 236 |
+
margin: 15px 0;
|
| 237 |
+
|
| 238 |
+
&__line {
|
| 239 |
+
position: relative;
|
| 240 |
+
padding-left: 20px;
|
| 241 |
+
|
| 242 |
+
&::before {
|
| 243 |
+
content: '>';
|
| 244 |
+
position: absolute;
|
| 245 |
+
left: 0;
|
| 246 |
+
color: map-get($neural-colors, 'matrix-green');
|
| 247 |
+
}
|
| 248 |
+
}
|
| 249 |
+
}
|
| 250 |
+
|
| 251 |
+
// Status Indicators
|
| 252 |
+
.neural-status {
|
| 253 |
+
display: flex;
|
| 254 |
+
align-items: center;
|
| 255 |
+
gap: 10px;
|
| 256 |
+
|
| 257 |
+
&__indicator {
|
| 258 |
+
width: 10px;
|
| 259 |
+
height: 10px;
|
| 260 |
+
border-radius: 50%;
|
| 261 |
+
background: map-get($neural-colors, 'matrix-green');
|
| 262 |
+
animation: data-pulse 2s infinite;
|
| 263 |
+
}
|
| 264 |
+
|
| 265 |
+
&__text {
|
| 266 |
+
@include cyber-text(0.9rem, 'matrix-green');
|
| 267 |
+
}
|
| 268 |
+
}
|
| 269 |
+
|
| 270 |
+
// Advanced Grid Layout
|
| 271 |
+
.neural-grid {
|
| 272 |
+
display: grid;
|
| 273 |
+
grid-template-columns: repeat(auto-fit, minmax(250px, 1fr));
|
| 274 |
+
gap: 20px;
|
| 275 |
+
padding: 20px;
|
| 276 |
+
|
| 277 |
+
&__item {
|
| 278 |
+
@include neural-container(1);
|
| 279 |
+
padding: 15px;
|
| 280 |
+
transition: transform 0.3s ease;
|
| 281 |
+
|
| 282 |
+
&:hover {
|
| 283 |
+
transform: translateZ(20px);
|
| 284 |
+
z-index: 2;
|
| 285 |
+
}
|
| 286 |
+
}
|
| 287 |
}
|
| 288 |
+
"""
|
| 289 |
+
|
| 290 |
+
# Compile SCSS to CSS
|
| 291 |
+
def compile_scss():
|
| 292 |
+
try:
|
| 293 |
+
return sass.compile(string=CYBERPUNK_SCSS)
|
| 294 |
+
except sass.CompileError as e:
|
| 295 |
+
print(f"SCSS Compilation Error: {e}")
|
| 296 |
+
return ""
|
| 297 |
+
|
| 298 |
+
# Advanced JavaScript for dynamic effects
|
| 299 |
+
NEURAL_JS = """
|
| 300 |
+
<script>
|
| 301 |
+
class NeuralInterface {
|
| 302 |
+
constructor() {
|
| 303 |
+
this.initializeEffects();
|
| 304 |
+
this.setupEventListeners();
|
| 305 |
+
}
|
| 306 |
+
|
| 307 |
+
initializeEffects() {
|
| 308 |
+
this.setupGlitchEffects();
|
| 309 |
+
this.setupDataStreams();
|
| 310 |
+
this.setupHolographicEffects();
|
| 311 |
+
}
|
| 312 |
+
|
| 313 |
+
setupGlitchEffects() {
|
| 314 |
+
document.querySelectorAll('.neural-interface__header').forEach(element => {
|
| 315 |
+
setInterval(() => {
|
| 316 |
+
if (Math.random() < 0.1) {
|
| 317 |
+
element.style.transform = `translate(${Math.random() * 4 - 2}px, ${Math.random() * 4 - 2}px)`;
|
| 318 |
+
setTimeout(() => element.style.transform = 'none', 100);
|
| 319 |
+
}
|
| 320 |
+
}, 2000);
|
| 321 |
+
});
|
| 322 |
+
}
|
| 323 |
+
|
| 324 |
+
setupDataStreams() {
|
| 325 |
+
const canvas = document.createElement('canvas');
|
| 326 |
+
document.body.appendChild(canvas);
|
| 327 |
+
canvas.style.position = 'fixed';
|
| 328 |
+
canvas.style.top = '0';
|
| 329 |
+
canvas.style.left = '0';
|
| 330 |
+
canvas.style.width = '100%';
|
| 331 |
+
canvas.style.height = '100%';
|
| 332 |
+
canvas.style.pointerEvents = 'none';
|
| 333 |
+
canvas.style.zIndex = '1';
|
| 334 |
+
canvas.style.opacity = '0.1';
|
| 335 |
+
|
| 336 |
+
const ctx = canvas.getContext('2d');
|
| 337 |
+
const matrix = "ABCDEFGHIJKLMNOPQRSTUVWXYZ123456789@#$%^&*()*&^%";
|
| 338 |
+
const drops = [];
|
| 339 |
+
|
| 340 |
+
function initMatrix() {
|
| 341 |
+
canvas.width = window.innerWidth;
|
| 342 |
+
canvas.height = window.innerHeight;
|
| 343 |
+
const columns = canvas.width / 20;
|
| 344 |
+
for(let i = 0; i < columns; i++) drops[i] = 1;
|
| 345 |
+
}
|
| 346 |
+
|
| 347 |
+
function drawMatrix() {
|
| 348 |
+
ctx.fillStyle = 'rgba(0, 0, 0, 0.05)';
|
| 349 |
+
ctx.fillRect(0, 0, canvas.width, canvas.height);
|
| 350 |
+
ctx.fillStyle = '#0F0';
|
| 351 |
+
ctx.font = '15px monospace';
|
| 352 |
+
for(let i = 0; i < drops.length; i++) {
|
| 353 |
+
const text = matrix[Math.floor(Math.random() * matrix.length)];
|
| 354 |
+
ctx.fillText(text, i * 20, drops[i] * 20);
|
| 355 |
+
if(drops[i] * 20 > canvas.height && Math.random() > 0.975)
|
| 356 |
+
drops[i] = 0;
|
| 357 |
+
drops[i]++;
|
| 358 |
+
}
|
| 359 |
+
}
|
| 360 |
+
|
| 361 |
+
window.addEventListener('resize', initMatrix);
|
| 362 |
+
initMatrix();
|
| 363 |
+
setInterval(drawMatrix, 50);
|
| 364 |
+
}
|
| 365 |
+
|
| 366 |
+
setupHolographicEffects() {
|
| 367 |
+
document.querySelectorAll('.neural-button').forEach(button => {
|
| 368 |
+
button.addEventListener('mousemove', e => {
|
| 369 |
+
const rect = button.getBoundingClientRect();
|
| 370 |
+
const x = e.clientX - rect.left;
|
| 371 |
+
const y = e.clientY - rect.top;
|
| 372 |
+
|
| 373 |
+
button.style.setProperty('--x', `${x}px`);
|
| 374 |
+
button.style.setProperty('--y', `${y}px`);
|
| 375 |
+
});
|
| 376 |
+
});
|
| 377 |
+
}
|
| 378 |
+
|
| 379 |
+
setupEventListeners() {
|
| 380 |
+
document.addEventListener('click', e => {
|
| 381 |
+
if (e.target.closest('.neural-button')) {
|
| 382 |
+
this.createRippleEffect(e);
|
| 383 |
+
}
|
| 384 |
+
});
|
| 385 |
+
}
|
| 386 |
+
|
| 387 |
+
createRippleEffect(e) {
|
| 388 |
+
const button = e.target.closest('.neural-button');
|
| 389 |
+
const ripple = document.createElement('span');
|
| 390 |
+
ripple.classList.add('ripple');
|
| 391 |
+
button.appendChild(ripple);
|
| 392 |
+
|
| 393 |
+
const rect = button.getBoundingClientRect();
|
| 394 |
+
const size = Math.max(rect.width, rect.height);
|
| 395 |
+
ripple.style.width = ripple.style.height = `${size}px`;
|
| 396 |
+
|
| 397 |
+
const x = e.clientX - rect.left - size/2;
|
| 398 |
+
const y = e.clientY - rect.top - size/2;
|
| 399 |
+
ripple.style.left = `${x}px`;
|
| 400 |
+
ripple.style.top = `${y}px`;
|
| 401 |
+
|
| 402 |
+
setTimeout(() => ripple.remove(), 600);
|
| 403 |
+
}
|
| 404 |
+
}
|
| 405 |
+
|
| 406 |
+
// Initialize Neural Interface
|
| 407 |
+
document.addEventListener('DOMContentLoaded', () => {
|
| 408 |
+
new NeuralInterface();
|
| 409 |
+
});
|
| 410 |
+
</script>
|
| 411 |
"""
|
| 412 |
|
| 413 |
# Function to process PDF files
|
|
|
|
| 447 |
os.unlink(pdf_path)
|
| 448 |
return None, f"Error processing PDF: {str(e)}", {"page_images": [], "total_pages": 0, "total_words": 0}
|
| 449 |
|
| 450 |
+
# New function to process Excel files
|
| 451 |
+
def process_excel(excel_file):
|
| 452 |
+
if excel_file is None:
|
| 453 |
+
return None, "No file uploaded", {"data_preview": "", "total_sheets": 0, "total_rows": 0}
|
| 454 |
+
|
| 455 |
+
try:
|
| 456 |
+
session_id = str(uuid.uuid4())
|
| 457 |
+
with tempfile.NamedTemporaryFile(suffix=".xlsx", delete=False) as temp_file:
|
| 458 |
+
temp_file.write(excel_file)
|
| 459 |
+
excel_path = temp_file.name
|
| 460 |
+
|
| 461 |
+
# Read Excel file with pandas
|
| 462 |
+
excel_data = pd.ExcelFile(excel_path)
|
| 463 |
+
sheet_names = excel_data.sheet_names
|
| 464 |
+
all_texts = []
|
| 465 |
+
total_rows = 0
|
| 466 |
+
|
| 467 |
+
# Process each sheet
|
| 468 |
+
for sheet in sheet_names:
|
| 469 |
+
df = pd.read_excel(excel_path, sheet_name=sheet)
|
| 470 |
+
total_rows += len(df)
|
| 471 |
+
|
| 472 |
+
# Convert dataframe to text for vectorization
|
| 473 |
+
sheet_text = f"Sheet: {sheet}\n"
|
| 474 |
+
sheet_text += df.to_string(index=False)
|
| 475 |
+
all_texts.append(sheet_text)
|
| 476 |
+
|
| 477 |
+
# Generate HTML preview of first sheet
|
| 478 |
+
first_df = pd.read_excel(excel_path, sheet_name=0)
|
| 479 |
+
preview_rows = min(10, len(first_df))
|
| 480 |
+
data_preview = first_df.head(preview_rows).to_html(classes="excel-preview-table", index=False)
|
| 481 |
+
|
| 482 |
+
# Process for vectorstore
|
| 483 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
| 484 |
+
chunks = text_splitter.create_documents(all_texts)
|
| 485 |
+
vectorstore = FAISS.from_documents(chunks, embeddings)
|
| 486 |
+
index_path = os.path.join(FAISS_INDEX_DIR, session_id)
|
| 487 |
+
vectorstore.save_local(index_path)
|
| 488 |
+
user_vectorstores[session_id] = vectorstore
|
| 489 |
+
|
| 490 |
+
os.unlink(excel_path)
|
| 491 |
+
excel_state = {"data_preview": data_preview, "total_sheets": len(sheet_names), "total_rows": total_rows}
|
| 492 |
+
return session_id, f"β
Successfully processed {len(chunks)} text chunks from Excel file", excel_state
|
| 493 |
+
except Exception as e:
|
| 494 |
+
if "excel_path" in locals() and os.path.exists(excel_path):
|
| 495 |
+
os.unlink(excel_path)
|
| 496 |
+
return None, f"Error processing Excel file: {str(e)}", {"data_preview": "", "total_sheets": 0, "total_rows": 0}
|
| 497 |
+
|
| 498 |
+
# Function to analyze image using SmolDocling
|
| 499 |
+
def analyze_image(image_file):
|
| 500 |
+
"""
|
| 501 |
+
Basic image analysis function that doesn't rely on external models
|
| 502 |
+
"""
|
| 503 |
+
if image_file is None:
|
| 504 |
+
return "No image uploaded. Please upload an image to analyze."
|
| 505 |
+
|
| 506 |
+
try:
|
| 507 |
+
image = Image.open(image_file)
|
| 508 |
+
width, height = image.size
|
| 509 |
+
format = image.format
|
| 510 |
+
mode = image.mode
|
| 511 |
+
|
| 512 |
+
analysis = f"""## Technical Document Analysis
|
| 513 |
+
|
| 514 |
+
**Image Properties:**
|
| 515 |
+
- Dimensions: {width}x{height} pixels
|
| 516 |
+
- Format: {format}
|
| 517 |
+
- Color Mode: {mode}
|
| 518 |
+
|
| 519 |
+
**Technical Analysis:**
|
| 520 |
+
1. Document Quality:
|
| 521 |
+
- Resolution: {'High' if width > 2000 or height > 2000 else 'Medium' if width > 1000 or height > 1000 else 'Low'}
|
| 522 |
+
- Color Depth: {mode}
|
| 523 |
+
|
| 524 |
+
2. Recommendations:
|
| 525 |
+
- For text extraction, consider using PDF format
|
| 526 |
+
- For technical diagrams, ensure high resolution
|
| 527 |
+
- Consider OCR for text content
|
| 528 |
+
|
| 529 |
+
**Note:** For detailed technical analysis, please convert to PDF format
|
| 530 |
+
"""
|
| 531 |
+
return analysis
|
| 532 |
+
except Exception as e:
|
| 533 |
+
return f"Error analyzing image: {str(e)}\n\nPlease try using PDF format instead."
|
| 534 |
+
|
| 535 |
+
# Function to handle different file types
|
| 536 |
+
def process_file(file_data, file_type):
|
| 537 |
+
if file_data is None:
|
| 538 |
+
return None, "No file uploaded", None
|
| 539 |
+
|
| 540 |
+
if file_type == "pdf":
|
| 541 |
+
return process_pdf(file_data)
|
| 542 |
+
elif file_type == "excel":
|
| 543 |
+
return process_excel(file_data)
|
| 544 |
+
elif file_type == "image":
|
| 545 |
+
# For image files, we'll just use them directly for analysis
|
| 546 |
+
# But we'll return a session ID to maintain consistency
|
| 547 |
+
session_id = str(uuid.uuid4())
|
| 548 |
+
return session_id, "β
Image file ready for analysis", None
|
| 549 |
+
else:
|
| 550 |
+
return None, "Unsupported file type", None
|
| 551 |
+
|
| 552 |
+
# Function for speech-to-text conversion
|
| 553 |
+
def speech_to_text():
|
| 554 |
+
try:
|
| 555 |
+
r = sr.Recognizer()
|
| 556 |
+
with sr.Microphone() as source:
|
| 557 |
+
r.adjust_for_ambient_noise(source)
|
| 558 |
+
audio = r.listen(source)
|
| 559 |
+
text = r.recognize_google(audio)
|
| 560 |
+
return text
|
| 561 |
+
except sr.UnknownValueError:
|
| 562 |
+
return "Could not understand audio. Please try again."
|
| 563 |
+
except sr.RequestError as e:
|
| 564 |
+
return f"Error with speech recognition service: {e}"
|
| 565 |
+
except Exception as e:
|
| 566 |
+
return f"Error converting speech to text: {str(e)}"
|
| 567 |
+
|
| 568 |
+
# Function for text-to-speech conversion
|
| 569 |
+
def text_to_speech(text, history):
|
| 570 |
+
if not text or not history:
|
| 571 |
+
return None
|
| 572 |
+
|
| 573 |
+
try:
|
| 574 |
+
# Get the last bot response
|
| 575 |
+
last_response = history[-1][1]
|
| 576 |
+
|
| 577 |
+
# Convert text to speech
|
| 578 |
+
tts = pyttsx3.init()
|
| 579 |
+
tts.setProperty('rate', 150)
|
| 580 |
+
tts.setProperty('volume', 0.9)
|
| 581 |
+
tts.save_to_file(last_response, "temp_output.mp3")
|
| 582 |
+
tts.runAndWait()
|
| 583 |
+
|
| 584 |
+
return "temp_output.mp3"
|
| 585 |
+
except Exception as e:
|
| 586 |
+
print(f"Error in text-to-speech: {e}")
|
| 587 |
+
return None
|
| 588 |
+
|
| 589 |
# Function to generate chatbot responses with Tech theme
|
| 590 |
+
def generate_response(message, session_id, model_name, history, web_search_enabled=True):
|
| 591 |
if not message:
|
| 592 |
return history
|
| 593 |
try:
|
|
|
|
| 598 |
if docs:
|
| 599 |
context = "\n\nRelevant information from uploaded PDF:\n" + "\n".join(f"- {doc.page_content}" for doc in docs)
|
| 600 |
|
| 601 |
+
# Check if it's a GitHub repo search and web search is enabled
|
| 602 |
+
if web_search_enabled and re.match(r'^/github\s+.+', message, re.IGNORECASE):
|
| 603 |
query = re.sub(r'^/github\s+', '', message, flags=re.IGNORECASE)
|
| 604 |
repo_results = search_github_repos(query)
|
| 605 |
if repo_results:
|
|
|
|
| 616 |
history.append((message, "No GitHub repositories found for your query."))
|
| 617 |
return history
|
| 618 |
|
| 619 |
+
# Check if it's a Stack Overflow search and web search is enabled
|
| 620 |
+
if web_search_enabled and re.match(r'^/stack\s+.+', message, re.IGNORECASE):
|
| 621 |
query = re.sub(r'^/stack\s+', '', message, flags=re.IGNORECASE)
|
| 622 |
qa_results = search_stackoverflow(query)
|
| 623 |
if qa_results:
|
|
|
|
| 910 |
except Exception as e:
|
| 911 |
return f"Error searching Stack Overflow: {str(e)}"
|
| 912 |
|
| 913 |
+
def detect_language(file_extension):
|
| 914 |
+
"""Map file extensions to programming languages"""
|
| 915 |
+
language_map = {
|
| 916 |
+
".py": "Python",
|
| 917 |
+
".js": "JavaScript",
|
| 918 |
+
".java": "Java",
|
| 919 |
+
".cpp": "C++",
|
| 920 |
+
".c": "C",
|
| 921 |
+
".cs": "C#",
|
| 922 |
+
".php": "PHP",
|
| 923 |
+
".rb": "Ruby",
|
| 924 |
+
".go": "Go",
|
| 925 |
+
".rs": "Rust",
|
| 926 |
+
".swift": "Swift",
|
| 927 |
+
".kt": "Kotlin",
|
| 928 |
+
".ts": "TypeScript",
|
| 929 |
+
".html": "HTML",
|
| 930 |
+
".css": "CSS",
|
| 931 |
+
".sql": "SQL",
|
| 932 |
+
".r": "R",
|
| 933 |
+
".m": "Objective-C/MATLAB",
|
| 934 |
+
".h": "C/C++ Header",
|
| 935 |
+
".hpp": "C++ Header",
|
| 936 |
+
".jsx": "React JSX",
|
| 937 |
+
".tsx": "React TSX",
|
| 938 |
+
".vue": "Vue.js",
|
| 939 |
+
".scala": "Scala",
|
| 940 |
+
".pl": "Perl",
|
| 941 |
+
".sh": "Shell Script",
|
| 942 |
+
".bash": "Bash Script",
|
| 943 |
+
".ps1": "PowerShell",
|
| 944 |
+
".yaml": "YAML",
|
| 945 |
+
".yml": "YAML",
|
| 946 |
+
".json": "JSON",
|
| 947 |
+
".xml": "XML",
|
| 948 |
+
".toml": "TOML",
|
| 949 |
+
".ini": "INI"
|
| 950 |
+
}
|
| 951 |
+
return language_map.get(file_extension.lower(), "Unknown")
|
| 952 |
+
|
| 953 |
+
def analyze_code(code_file):
|
| 954 |
+
"""Analyze code files and provide insights"""
|
| 955 |
+
if code_file is None:
|
| 956 |
+
return "No file uploaded. Please upload a code file to analyze."
|
| 957 |
+
|
| 958 |
+
try:
|
| 959 |
+
# Get file extension
|
| 960 |
+
file_extension = os.path.splitext(code_file.name)[1]
|
| 961 |
+
language = detect_language(file_extension)
|
| 962 |
+
|
| 963 |
+
# Read the file content
|
| 964 |
+
content = code_file.read().decode('utf-8', errors='ignore')
|
| 965 |
+
|
| 966 |
+
# Basic code metrics
|
| 967 |
+
total_lines = len(content.splitlines())
|
| 968 |
+
blank_lines = len([line for line in content.splitlines() if not line.strip()])
|
| 969 |
+
code_lines = total_lines - blank_lines
|
| 970 |
+
|
| 971 |
+
# Calculate complexity metrics
|
| 972 |
+
complexity_metrics = calculate_complexity(content, language)
|
| 973 |
+
|
| 974 |
+
# Generate analysis using LLM
|
| 975 |
+
analysis_prompt = f"""Analyze this {language} code and provide insights about:
|
| 976 |
+
1. Code structure and organization
|
| 977 |
+
2. Potential improvements or best practices
|
| 978 |
+
3. Security considerations
|
| 979 |
+
4. Performance implications
|
| 980 |
+
5. Maintainability factors
|
| 981 |
+
|
| 982 |
+
Code metrics:
|
| 983 |
+
- Total lines: {total_lines}
|
| 984 |
+
- Code lines: {code_lines}
|
| 985 |
+
- Blank lines: {blank_lines}
|
| 986 |
+
{complexity_metrics}
|
| 987 |
+
|
| 988 |
+
First 1000 characters of code:
|
| 989 |
+
{content[:1000]}...
|
| 990 |
+
"""
|
| 991 |
+
|
| 992 |
+
completion = client.chat.completions.create(
|
| 993 |
+
model="llama3-70b-8192",
|
| 994 |
+
messages=[
|
| 995 |
+
{"role": "system", "content": "You are an expert code reviewer and technical architect."},
|
| 996 |
+
{"role": "user", "content": analysis_prompt}
|
| 997 |
+
],
|
| 998 |
+
temperature=0.3,
|
| 999 |
+
max_tokens=1500
|
| 1000 |
+
)
|
| 1001 |
+
|
| 1002 |
+
# Format the analysis
|
| 1003 |
+
analysis = f"""## Code Analysis Report
|
| 1004 |
+
|
| 1005 |
+
**File Type:** {language}
|
| 1006 |
+
|
| 1007 |
+
### Code Metrics
|
| 1008 |
+
- Total Lines: {total_lines}
|
| 1009 |
+
- Code Lines: {code_lines}
|
| 1010 |
+
- Blank Lines: {blank_lines}
|
| 1011 |
+
|
| 1012 |
+
### Complexity Analysis
|
| 1013 |
+
{complexity_metrics}
|
| 1014 |
+
|
| 1015 |
+
### Expert Analysis
|
| 1016 |
+
{completion.choices[0].message.content}
|
| 1017 |
+
|
| 1018 |
+
### Recommendations
|
| 1019 |
+
1. Consider using a linter specific to {language}
|
| 1020 |
+
2. Review the security considerations mentioned above
|
| 1021 |
+
3. Consider automated testing to validate the code
|
| 1022 |
+
4. Document any complex algorithms or business logic
|
| 1023 |
+
"""
|
| 1024 |
+
return analysis
|
| 1025 |
+
|
| 1026 |
+
except Exception as e:
|
| 1027 |
+
return f"Error analyzing code: {str(e)}\n\nPlease ensure the file is properly formatted and encoded."
|
| 1028 |
+
|
| 1029 |
+
def calculate_complexity(content, language):
|
| 1030 |
+
"""Calculate various complexity metrics based on the language"""
|
| 1031 |
+
try:
|
| 1032 |
+
# Count function/method definitions
|
| 1033 |
+
function_patterns = {
|
| 1034 |
+
"Python": r"def\s+\w+\s*\(",
|
| 1035 |
+
"JavaScript": r"function\s+\w+\s*\(|const\s+\w+\s*=\s*\([^)]*\)\s*=>",
|
| 1036 |
+
"Java": r"(public|private|protected)?\s*\w+\s+\w+\s*\([^)]*\)\s*\{",
|
| 1037 |
+
"C++": r"\w+\s+\w+\s*\([^)]*\)\s*\{",
|
| 1038 |
+
}
|
| 1039 |
+
|
| 1040 |
+
pattern = function_patterns.get(language, r"\w+\s+\w+\s*\([^)]*\)")
|
| 1041 |
+
function_count = len(re.findall(pattern, content))
|
| 1042 |
+
|
| 1043 |
+
# Calculate cyclomatic complexity (rough estimate)
|
| 1044 |
+
decision_patterns = [
|
| 1045 |
+
r"\bif\b",
|
| 1046 |
+
r"\bwhile\b",
|
| 1047 |
+
r"\bfor\b",
|
| 1048 |
+
r"\bcase\b",
|
| 1049 |
+
r"\bcatch\b",
|
| 1050 |
+
r"\b&&\b",
|
| 1051 |
+
r"\b\|\|\b"
|
| 1052 |
+
]
|
| 1053 |
+
|
| 1054 |
+
decision_points = sum(len(re.findall(p, content)) for p in decision_patterns)
|
| 1055 |
+
|
| 1056 |
+
# Estimate maintainability
|
| 1057 |
+
avg_line_length = sum(len(line) for line in content.splitlines()) / len(content.splitlines()) if content.splitlines() else 0
|
| 1058 |
+
|
| 1059 |
+
return f"""**Complexity Metrics:**
|
| 1060 |
+
- Estimated Function Count: {function_count}
|
| 1061 |
+
- Decision Points: {decision_points}
|
| 1062 |
+
- Average Line Length: {avg_line_length:.2f} characters
|
| 1063 |
+
- Cyclomatic Complexity Estimate: {decision_points + 1}
|
| 1064 |
+
"""
|
| 1065 |
+
except Exception as e:
|
| 1066 |
+
return f"Error calculating complexity: {str(e)}"
|
| 1067 |
+
|
| 1068 |
+
def update_status_with_animation(status):
|
| 1069 |
+
return f"""
|
| 1070 |
+
<div class="status-message">
|
| 1071 |
+
<div class="loading-container">
|
| 1072 |
+
<div class="loading-bar"></div>
|
| 1073 |
+
</div>
|
| 1074 |
+
> {status}
|
| 1075 |
+
</div>
|
| 1076 |
+
"""
|
| 1077 |
+
|
| 1078 |
+
# Update the analysis results display
|
| 1079 |
+
def format_analysis_results(analysis):
|
| 1080 |
+
return f"""
|
| 1081 |
+
<div class="analysis-container">
|
| 1082 |
+
<div class="analysis-header">> ANALYSIS COMPLETE</div>
|
| 1083 |
+
{analysis}
|
| 1084 |
+
<div class="loading-container">
|
| 1085 |
+
<div class="loading-bar"></div>
|
| 1086 |
+
</div>
|
| 1087 |
+
</div>
|
| 1088 |
+
"""
|
| 1089 |
+
|
| 1090 |
+
def format_code_metrics(metrics):
|
| 1091 |
+
return f"""
|
| 1092 |
+
<div class="metric-card">
|
| 1093 |
+
<div style="color: var(--neon-yellow);">SYSTEM METRICS</div>
|
| 1094 |
+
<div style="margin-top: 10px;">
|
| 1095 |
+
{metrics}
|
| 1096 |
+
</div>
|
| 1097 |
+
</div>
|
| 1098 |
+
"""
|
| 1099 |
+
|
| 1100 |
+
# Add cyberpunk UI sound effects
|
| 1101 |
+
def play_interface_sound(sound_type):
|
| 1102 |
+
sounds = {
|
| 1103 |
+
"hover": "hover.mp3",
|
| 1104 |
+
"click": "click.mp3",
|
| 1105 |
+
"success": "success.mp3",
|
| 1106 |
+
"error": "error.mp3"
|
| 1107 |
+
}
|
| 1108 |
+
return gr.Audio(value=sounds.get(sound_type), autoplay=True, visible=False)
|
| 1109 |
+
|
| 1110 |
+
# Create the Gradio interface with advanced cyberpunk styling
|
| 1111 |
+
def create_cyberpunk_interface():
|
| 1112 |
+
css = compile_scss()
|
| 1113 |
+
|
| 1114 |
+
with gr.Blocks(css=css, head=NEURAL_JS) as demo:
|
| 1115 |
current_session_id = gr.State(None)
|
| 1116 |
pdf_state = gr.State({"page_images": [], "total_pages": 0, "total_words": 0})
|
| 1117 |
+
excel_state = gr.State({"data_preview": "", "total_sheets": 0, "total_rows": 0})
|
| 1118 |
+
file_type = gr.State("none")
|
| 1119 |
+
audio_status = gr.State("Ready")
|
| 1120 |
+
|
| 1121 |
gr.HTML("""
|
| 1122 |
+
<div class="neural-interface">
|
| 1123 |
+
<div class="neural-interface__header">TECH-VISION_v3.0</div>
|
| 1124 |
+
<div class="neural-status">
|
| 1125 |
+
<div class="neural-status__indicator"></div>
|
| 1126 |
+
<div class="neural-status__text">SYSTEM ONLINE</div>
|
| 1127 |
+
</div>
|
| 1128 |
</div>
|
| 1129 |
""")
|
| 1130 |
+
with gr.Row(elem_classes="neural-grid"):
|
| 1131 |
with gr.Column(scale=1, min_width=300):
|
| 1132 |
+
with gr.Tabs():
|
| 1133 |
+
with gr.TabItem("[SYS:SCAN] Code Analysis"):
|
| 1134 |
+
gr.HTML("""
|
| 1135 |
+
<div class="upload-container">
|
| 1136 |
+
<div style="color: var(--neon-blue); margin-bottom: 10px;">
|
| 1137 |
+
> INITIATE CODE SCAN
|
| 1138 |
+
</div>
|
| 1139 |
+
""")
|
| 1140 |
+
code_file = gr.File(
|
| 1141 |
+
label="UPLOAD SOURCE CODE",
|
| 1142 |
+
file_types=[".py", ".js", ".java", ".cpp", ".c", ".cs", ".php", ".rb",
|
| 1143 |
+
".go", ".rs", ".swift", ".kt", ".ts", ".html", ".css",
|
| 1144 |
+
".sql", ".r", ".m", ".h", ".hpp", ".jsx", ".tsx",
|
| 1145 |
+
".vue", ".scala", ".pl", ".sh", ".bash", ".ps1",
|
| 1146 |
+
".yaml", ".yml", ".json", ".xml", ".toml", ".ini"],
|
| 1147 |
+
type="binary"
|
| 1148 |
+
)
|
| 1149 |
+
gr.HTML("</div>")
|
| 1150 |
+
code_analyze_btn = gr.Button("INITIATE ANALYSIS", elem_classes="primary-btn")
|
| 1151 |
+
|
| 1152 |
+
with gr.TabItem("PDF"):
|
| 1153 |
+
pdf_file = gr.File(label="Upload PDF Document", file_types=[".pdf"], type="binary")
|
| 1154 |
+
pdf_upload_button = gr.Button("Process PDF", variant="primary")
|
| 1155 |
+
|
| 1156 |
+
with gr.TabItem("Excel"):
|
| 1157 |
+
excel_file = gr.File(label="Upload Excel File", file_types=[".xlsx", ".xls"], type="binary")
|
| 1158 |
+
excel_upload_button = gr.Button("Process Excel", variant="primary")
|
| 1159 |
+
|
| 1160 |
+
with gr.TabItem("Image"):
|
| 1161 |
+
image_input = gr.File(
|
| 1162 |
+
label="Upload Image",
|
| 1163 |
+
file_types=["image"],
|
| 1164 |
+
type="filepath"
|
| 1165 |
+
)
|
| 1166 |
+
analyze_btn = gr.Button("Analyze Image")
|
| 1167 |
+
|
| 1168 |
+
file_status = gr.Markdown("No file uploaded yet")
|
| 1169 |
+
|
| 1170 |
+
# Model selector
|
| 1171 |
model_dropdown = gr.Dropdown(
|
| 1172 |
choices=["llama3-70b-8192", "llama3-8b-8192", "mixtral-8x7b-32768", "gemma-7b-it"],
|
| 1173 |
value="llama3-70b-8192",
|
| 1174 |
label="Select Groq Model"
|
| 1175 |
)
|
| 1176 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1177 |
with gr.Column(scale=2, min_width=600):
|
| 1178 |
with gr.Tabs():
|
| 1179 |
with gr.TabItem("PDF Viewer"):
|
| 1180 |
with gr.Column(elem_classes="pdf-viewer-container"):
|
| 1181 |
page_slider = gr.Slider(minimum=1, maximum=1, step=1, label="Page Number", value=1)
|
| 1182 |
pdf_image = gr.Image(label="PDF Page", type="pil", elem_classes="pdf-viewer-image")
|
| 1183 |
+
pdf_stats = gr.Markdown("No PDF uploaded yet", elem_classes="stats-box")
|
| 1184 |
|
| 1185 |
+
with gr.TabItem("Excel Viewer"):
|
| 1186 |
+
excel_preview = gr.HTML(label="Excel Preview", elem_classes="file-preview")
|
| 1187 |
+
excel_stats = gr.Markdown("No Excel file uploaded yet", elem_classes="stats-box")
|
| 1188 |
|
| 1189 |
+
with gr.TabItem("Image Analysis"):
|
| 1190 |
+
image_preview = gr.Image(label="Image Preview", type="pil")
|
| 1191 |
+
image_analysis_results = gr.Markdown("Upload an image and click 'Analyze Image' to see analysis results")
|
| 1192 |
+
|
| 1193 |
+
with gr.TabItem("Code Analysis Results"):
|
| 1194 |
+
analysis_results = gr.Markdown("Upload a code file and click 'Analyze Code' to see analysis results")
|
| 1195 |
+
with gr.Row():
|
| 1196 |
+
copy_btn = gr.Button("π Copy Analysis")
|
| 1197 |
+
export_btn = gr.Button("π₯ Export Report")
|
| 1198 |
+
|
| 1199 |
+
# Audio visualization elements
|
| 1200 |
+
with gr.Row(elem_classes="container"):
|
| 1201 |
+
with gr.Column():
|
| 1202 |
+
audio_vis = gr.HTML("""
|
| 1203 |
+
<div class="audio-visualization">
|
| 1204 |
+
<div class="audio-bar" style="height: 5px;"></div>
|
| 1205 |
+
<div class="audio-bar" style="height: 12px;"></div>
|
| 1206 |
+
<div class="audio-bar" style="height: 18px;"></div>
|
| 1207 |
+
<div class="audio-bar" style="height: 15px;"></div>
|
| 1208 |
+
<div class="audio-bar" style="height: 10px;"></div>
|
| 1209 |
+
<div class="audio-bar" style="height: 20px;"></div>
|
| 1210 |
+
<div class="audio-bar" style="height: 14px;"></div>
|
| 1211 |
+
<div class="audio-bar" style="height: 8px;"></div>
|
| 1212 |
+
</div>
|
| 1213 |
+
""", visible=False)
|
| 1214 |
+
audio_status_display = gr.Markdown("", elem_classes="audio-status")
|
| 1215 |
|
| 1216 |
+
# Chat interface
|
| 1217 |
with gr.Row(elem_classes="container"):
|
| 1218 |
with gr.Column(scale=2, min_width=600):
|
| 1219 |
+
chatbot = gr.Chatbot(
|
| 1220 |
+
height=400,
|
| 1221 |
+
show_copy_button=True,
|
| 1222 |
+
elem_classes="chat-container",
|
| 1223 |
+
type="messages" # Use the new messages format
|
| 1224 |
+
)
|
| 1225 |
with gr.Row():
|
| 1226 |
+
msg = gr.Textbox(
|
| 1227 |
+
show_label=False,
|
| 1228 |
+
placeholder="Ask about your document or click the microphone to speak...",
|
| 1229 |
+
scale=5
|
| 1230 |
+
)
|
| 1231 |
+
voice_btn = gr.Button("π€", elem_classes="voice-btn")
|
| 1232 |
send_btn = gr.Button("Send", scale=1)
|
| 1233 |
+
|
| 1234 |
+
with gr.Row(elem_classes="audio-controls"):
|
| 1235 |
+
clear_btn = gr.Button("Clear Conversation")
|
| 1236 |
+
speak_btn = gr.Button("π Speak Response", elem_classes="speak-btn")
|
| 1237 |
+
audio_player = gr.Audio(label="Response Audio", type="filepath", visible=False)
|
| 1238 |
|
| 1239 |
+
# Event Handlers for PDF processing
|
| 1240 |
+
pdf_upload_button.click(
|
| 1241 |
+
lambda x: ("pdf", x),
|
| 1242 |
+
inputs=[pdf_file],
|
| 1243 |
+
outputs=[file_type, file_status]
|
| 1244 |
+
).then(
|
| 1245 |
process_pdf,
|
| 1246 |
inputs=[pdf_file],
|
| 1247 |
+
outputs=[current_session_id, file_status, pdf_state]
|
| 1248 |
).then(
|
| 1249 |
update_pdf_viewer,
|
| 1250 |
inputs=[pdf_state],
|
| 1251 |
+
outputs=[page_slider, pdf_image, pdf_stats]
|
| 1252 |
)
|
| 1253 |
|
| 1254 |
+
# Event Handlers for Excel processing
|
| 1255 |
+
def update_excel_preview(state):
|
| 1256 |
+
if not state:
|
| 1257 |
+
return "", "No Excel file uploaded yet"
|
| 1258 |
+
preview = state.get("data_preview", "")
|
| 1259 |
+
sheets = state.get("total_sheets", 0)
|
| 1260 |
+
rows = state.get("total_rows", 0)
|
| 1261 |
+
stats = f"**Excel Statistics:**\nSheets: {sheets}\nTotal Rows: {rows}"
|
| 1262 |
+
return preview, stats
|
| 1263 |
+
|
| 1264 |
+
excel_upload_button.click(
|
| 1265 |
+
lambda x: ("excel", x),
|
| 1266 |
+
inputs=[excel_file],
|
| 1267 |
+
outputs=[file_type, file_status]
|
| 1268 |
+
).then(
|
| 1269 |
+
process_excel,
|
| 1270 |
+
inputs=[excel_file],
|
| 1271 |
+
outputs=[current_session_id, file_status, excel_state]
|
| 1272 |
+
).then(
|
| 1273 |
+
update_excel_preview,
|
| 1274 |
+
inputs=[excel_state],
|
| 1275 |
+
outputs=[excel_preview, excel_stats]
|
| 1276 |
+
)
|
| 1277 |
+
|
| 1278 |
+
# Event Handlers for Image Analysis
|
| 1279 |
+
analyze_btn.click(
|
| 1280 |
+
lambda x: ("image", x),
|
| 1281 |
+
inputs=[image_input],
|
| 1282 |
+
outputs=[file_type, file_status]
|
| 1283 |
+
).then(
|
| 1284 |
+
analyze_image,
|
| 1285 |
+
inputs=[image_input],
|
| 1286 |
+
outputs=[image_analysis_results]
|
| 1287 |
+
).then(
|
| 1288 |
+
lambda x: Image.open(x) if x else None,
|
| 1289 |
+
inputs=[image_input],
|
| 1290 |
+
outputs=[image_preview]
|
| 1291 |
+
)
|
| 1292 |
+
|
| 1293 |
+
# Event Handlers for Code Analysis
|
| 1294 |
+
code_analyze_btn.click(
|
| 1295 |
+
update_status_with_animation,
|
| 1296 |
+
inputs=[],
|
| 1297 |
+
outputs=[file_status]
|
| 1298 |
+
).then(
|
| 1299 |
+
analyze_code,
|
| 1300 |
+
inputs=[code_file],
|
| 1301 |
+
outputs=[analysis_results]
|
| 1302 |
+
).then(
|
| 1303 |
+
format_analysis_results,
|
| 1304 |
+
inputs=[analysis_results],
|
| 1305 |
+
outputs=[analysis_results]
|
| 1306 |
+
)
|
| 1307 |
+
|
| 1308 |
+
# Chat message handling
|
| 1309 |
msg.submit(
|
| 1310 |
generate_response,
|
| 1311 |
inputs=[msg, current_session_id, model_dropdown, chatbot],
|
|
|
|
| 1318 |
outputs=[chatbot]
|
| 1319 |
).then(lambda: "", None, [msg])
|
| 1320 |
|
| 1321 |
+
# Improved speech-to-text with visual feedback
|
| 1322 |
+
voice_btn.click(
|
| 1323 |
+
speech_to_text,
|
| 1324 |
+
inputs=[audio_status],
|
| 1325 |
+
outputs=[audio_status_display, audio_vis, msg]
|
| 1326 |
)
|
| 1327 |
|
| 1328 |
+
# Improved text-to-speech with visual feedback
|
| 1329 |
+
speak_btn.click(
|
| 1330 |
+
text_to_speech,
|
| 1331 |
+
inputs=[audio_status, chatbot],
|
| 1332 |
+
outputs=[audio_status_display, audio_vis, audio_player]
|
| 1333 |
+
).then(
|
| 1334 |
+
lambda x: gr.update(visible=True) if x else gr.update(visible=False),
|
| 1335 |
+
inputs=[audio_player],
|
| 1336 |
+
outputs=[audio_player]
|
| 1337 |
+
)
|
| 1338 |
+
|
| 1339 |
+
# Page navigation for PDF
|
| 1340 |
page_slider.change(
|
| 1341 |
update_image,
|
| 1342 |
inputs=[page_slider, pdf_state],
|
| 1343 |
outputs=[pdf_image]
|
| 1344 |
)
|
| 1345 |
|
| 1346 |
+
# Clear conversation and reset UI
|
| 1347 |
+
clear_btn.click(
|
| 1348 |
+
lambda: (
|
| 1349 |
+
[], None, "No file uploaded yet",
|
| 1350 |
+
{"page_images": [], "total_pages": 0, "total_words": 0},
|
| 1351 |
+
{"data_preview": "", "total_sheets": 0, "total_rows": 0},
|
| 1352 |
+
"none", 0, None, "No PDF uploaded yet", "",
|
| 1353 |
+
"No Excel file uploaded yet", None,
|
| 1354 |
+
"Upload an image and click 'Analyze Image' to see results", None,
|
| 1355 |
+
gr.update(visible=False), "Ready"
|
| 1356 |
+
),
|
| 1357 |
+
None,
|
| 1358 |
+
[chatbot, current_session_id, file_status, pdf_state, excel_state,
|
| 1359 |
+
file_type, page_slider, pdf_image, pdf_stats, excel_preview,
|
| 1360 |
+
excel_stats, image_preview, image_analysis_results, audio_player,
|
| 1361 |
+
audio_vis, audio_status_display]
|
|
|
|
| 1362 |
)
|
| 1363 |
|
| 1364 |
+
# Add footer with creator attribution
|
| 1365 |
+
gr.HTML("""
|
| 1366 |
+
<div style="text-align: center; margin-top: 20px; padding: 10px; color: #666; font-size: 0.8rem; border-top: 1px solid #eee;">
|
| 1367 |
+
Created by Calvin Allen Crawford
|
| 1368 |
+
</div>
|
| 1369 |
+
""")
|
| 1370 |
+
|
| 1371 |
+
return demo
|
| 1372 |
|
| 1373 |
# Launch the app
|
| 1374 |
if __name__ == "__main__":
|
| 1375 |
+
demo = create_cyberpunk_interface()
|
| 1376 |
demo.launch()
|