Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,218 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import groq
|
3 |
+
import os
|
4 |
+
import tempfile
|
5 |
+
import uuid
|
6 |
+
from dotenv import load_dotenv
|
7 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
8 |
+
from langchain.vectorstores import FAISS
|
9 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
10 |
+
import fitz # PyMuPDF
|
11 |
+
import base64
|
12 |
+
from PIL import Image
|
13 |
+
import io
|
14 |
+
|
15 |
+
# Load environment variables
|
16 |
+
load_dotenv()
|
17 |
+
client = groq.Client(api_key=os.getenv("GROQ_LEGAL_API_KEY"))
|
18 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
19 |
+
|
20 |
+
# Directory to store FAISS indexes
|
21 |
+
FAISS_INDEX_DIR = "faiss_indexes_tech"
|
22 |
+
if not os.path.exists(FAISS_INDEX_DIR):
|
23 |
+
os.makedirs(FAISS_INDEX_DIR)
|
24 |
+
|
25 |
+
# Dictionary to store user-specific vectorstores
|
26 |
+
user_vectorstores = {}
|
27 |
+
|
28 |
+
# Custom CSS for Tech theme
|
29 |
+
custom_css = """
|
30 |
+
:root {
|
31 |
+
--primary-color: #008080; /* Teal */
|
32 |
+
--secondary-color: #006666; /* Dark Teal */
|
33 |
+
--light-background: #E0FFFF; /* Light Cyan */
|
34 |
+
--dark-text: #333333;
|
35 |
+
--white: #FFFFFF;
|
36 |
+
--border-color: #E5E7EB;
|
37 |
+
}
|
38 |
+
body { background-color: var(--light-background); font-family: 'Inter', sans-serif; }
|
39 |
+
.container { max-width: 1200px !important; margin: 0 auto !important; padding: 10px; }
|
40 |
+
.header { background-color: var(--white); border-bottom: 2px solid var(--border-color); padding: 15px 0; margin-bottom: 20px; border-radius: 12px 12px 0 0; box-shadow: 0 2px 4px rgba(0,0,0,0.05); }
|
41 |
+
.header-title { color: var(--secondary-color); font-size: 1.8rem; font-weight: 700; text-align: center; }
|
42 |
+
.header-subtitle { color: var(--dark-text); font-size: 1rem; text-align: center; margin-top: 5px; }
|
43 |
+
.chat-container { border-radius: 12px !important; box-shadow: 0 4px 6px rgba(0,0,0,0.1) !important; background-color: var(--white) !important; border: 1px solid var(--border-color) !important; min-height: 500px; }
|
44 |
+
.message-user { background-color: var(--primary-color) !important; color: var(--white) !important; border-radius: 18px 18px 4px 18px !important; padding: 12px 16px !important; margin-left: auto !important; max-width: 80% !important; }
|
45 |
+
.message-bot { background-color: #F0F0F0 !important; color: var(--dark-text) !important; border-radius: 18px 18px 18px 4px !important; padding: 12px 16px !important; margin-right: auto !important; max-width: 80% !important; }
|
46 |
+
.input-area { background-color: var(--white) !important; border-top: 1px solid var(--border-color) !important; padding: 12px !important; border-radius: 0 0 12px 12px !important; }
|
47 |
+
.input-box { border: 1px solid var(--border-color) !important; border-radius: 24px !important; padding: 12px 16px !important; box-shadow: 0 2px 4px rgba(0,0,0,0.05) !important; }
|
48 |
+
.send-btn { background-color: var(--secondary-color) !important; border-radius: 24px !important; color: var(--white) !important; padding: 10px 20px !important; font-weight: 500 !important; }
|
49 |
+
.clear-btn { background-color: #F0F0F0 !important; border: 1px solid var(--border-color) !important; border-radius: 24px !important; color: var(--dark-text) !important; padding: 8px 16px !important; font-weight: 500 !important; }
|
50 |
+
.pdf-viewer-container { border-radius: 12px !important; box-shadow: 0 4px 6px rgba(0,0,0,0.1) !important; background-color: var(--white) !important; border: 1px solid var(--border-color) !important; padding: 20px; }
|
51 |
+
.pdf-viewer-image { max-width: 100%; height: auto; border: 1px solid var(--border-color); border-radius: 12px; box-shadow: 0 2px 4px rgba(0,0,0,0.05); }
|
52 |
+
.stats-box { background-color: #E0F0F0; padding: 10px; border-radius: 8px; margin-top: 10px; }
|
53 |
+
"""
|
54 |
+
|
55 |
+
# Function to process PDF files (unchanged)
|
56 |
+
def process_pdf(pdf_file):
|
57 |
+
if pdf_file is None:
|
58 |
+
return None, "No file uploaded", {"page_images": [], "total_pages": 0, "total_words": 0}
|
59 |
+
try:
|
60 |
+
session_id = str(uuid.uuid4())
|
61 |
+
with tempfile.NamedTemporaryFile(suffix=".pdf", delete=False) as temp_file:
|
62 |
+
temp_file.write(pdf_file)
|
63 |
+
pdf_path = temp_file.name
|
64 |
+
|
65 |
+
doc = fitz.open(pdf_path)
|
66 |
+
texts = [page.get_text() for page in doc]
|
67 |
+
page_images = []
|
68 |
+
for page in doc:
|
69 |
+
pix = page.get_pixmap()
|
70 |
+
img_bytes = pix.tobytes("png")
|
71 |
+
img_base64 = base64.b64encode(img_bytes).decode("utf-8")
|
72 |
+
page_images.append(img_base64)
|
73 |
+
total_pages = len(doc)
|
74 |
+
total_words = sum(len(text.split()) for text in texts)
|
75 |
+
doc.close()
|
76 |
+
|
77 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
78 |
+
chunks = text_splitter.create_documents(texts)
|
79 |
+
vectorstore = FAISS.from_documents(chunks, embeddings)
|
80 |
+
index_path = os.path.join(FAISS_INDEX_DIR, session_id)
|
81 |
+
vectorstore.save_local(index_path)
|
82 |
+
user_vectorstores[session_id] = vectorstore
|
83 |
+
|
84 |
+
os.unlink(pdf_path)
|
85 |
+
pdf_state = {"page_images": page_images, "total_pages": total_pages, "total_words": total_words}
|
86 |
+
return session_id, f"✅ Successfully processed {len(chunks)} text chunks from your PDF", pdf_state
|
87 |
+
except Exception as e:
|
88 |
+
if "pdf_path" in locals() and os.path.exists(pdf_path):
|
89 |
+
os.unlink(pdf_path)
|
90 |
+
return None, f"Error processing PDF: {str(e)}", {"page_images": [], "total_pages": 0, "total_words": 0}
|
91 |
+
|
92 |
+
# Function to generate chatbot responses with Tech theme
|
93 |
+
def generate_response(message, session_id, model_name, history):
|
94 |
+
if not message:
|
95 |
+
return history
|
96 |
+
try:
|
97 |
+
context = ""
|
98 |
+
if session_id and session_id in user_vectorstores:
|
99 |
+
vectorstore = user_vectorstores[session_id]
|
100 |
+
docs = vectorstore.similarity_search(message, k=3)
|
101 |
+
if docs:
|
102 |
+
context = "\n\nRelevant information from uploaded PDF:\n" + "\n".join(f"- {doc.page_content}" for doc in docs)
|
103 |
+
system_prompt = "You are a technical assistant specializing in analyzing tech manuals, whitepapers, and documentation."
|
104 |
+
if context:
|
105 |
+
system_prompt += " Use the following context to answer the question if relevant: " + context
|
106 |
+
completion = client.chat.completions.create(
|
107 |
+
model=model_name,
|
108 |
+
messages=[
|
109 |
+
{"role": "system", "content": system_prompt},
|
110 |
+
{"role": "user", "content": message}
|
111 |
+
],
|
112 |
+
temperature=0.7,
|
113 |
+
max_tokens=1024
|
114 |
+
)
|
115 |
+
response = completion.choices[0].message.content
|
116 |
+
history.append((message, response))
|
117 |
+
return history
|
118 |
+
except Exception as e:
|
119 |
+
history.append((message, f"Error generating response: {str(e)}"))
|
120 |
+
return history
|
121 |
+
|
122 |
+
# Functions to update PDF viewer (unchanged)
|
123 |
+
def update_pdf_viewer(pdf_state):
|
124 |
+
if not pdf_state["total_pages"]:
|
125 |
+
return 0, None, "No PDF uploaded yet"
|
126 |
+
try:
|
127 |
+
img_data = base64.b64decode(pdf_state["page_images"][0])
|
128 |
+
img = Image.open(io.BytesIO(img_data))
|
129 |
+
return pdf_state["total_pages"], img, f"**Total Pages:** {pdf_state['total_pages']}\n**Total Words:** {pdf_state['total_words']}"
|
130 |
+
except Exception as e:
|
131 |
+
print(f"Error decoding image: {e}")
|
132 |
+
return 0, None, "Error displaying PDF"
|
133 |
+
|
134 |
+
def update_image(page_num, pdf_state):
|
135 |
+
if not pdf_state["total_pages"] or page_num < 1 or page_num > pdf_state["total_pages"]:
|
136 |
+
return None
|
137 |
+
try:
|
138 |
+
img_data = base64.b64decode(pdf_state["page_images"][page_num - 1])
|
139 |
+
img = Image.open(io.BytesIO(img_data))
|
140 |
+
return img
|
141 |
+
except Exception as e:
|
142 |
+
print(f"Error decoding image: {e}")
|
143 |
+
return None
|
144 |
+
|
145 |
+
# Gradio interface
|
146 |
+
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
|
147 |
+
current_session_id = gr.State(None)
|
148 |
+
pdf_state = gr.State({"page_images": [], "total_pages": 0, "total_words": 0})
|
149 |
+
gr.HTML("""
|
150 |
+
<div class="header">
|
151 |
+
<div class="header-title">Tech-Vision</div>
|
152 |
+
<div class="header-subtitle">Analyze technical documents with Groq's LLM API.</div>
|
153 |
+
</div>
|
154 |
+
""")
|
155 |
+
with gr.Row(elem_classes="container"):
|
156 |
+
with gr.Column(scale=1, min_width=300):
|
157 |
+
pdf_file = gr.File(label="Upload PDF Document", file_types=[".pdf"], type="binary")
|
158 |
+
upload_button = gr.Button("Process PDF", variant="primary")
|
159 |
+
pdf_status = gr.Markdown("No PDF uploaded yet")
|
160 |
+
model_dropdown = gr.Dropdown(
|
161 |
+
choices=["llama3-70b-8192", "llama3-8b-8192", "mixtral-8x7b-32768", "gemma-7b-it"],
|
162 |
+
value="llama3-70b-8192",
|
163 |
+
label="Select Groq Model"
|
164 |
+
)
|
165 |
+
with gr.Column(scale=2, min_width=600):
|
166 |
+
with gr.Tabs():
|
167 |
+
with gr.TabItem("PDF Viewer"):
|
168 |
+
with gr.Column(elem_classes="pdf-viewer-container"):
|
169 |
+
page_slider = gr.Slider(minimum=1, maximum=1, step=1, label="Page Number", value=1)
|
170 |
+
pdf_image = gr.Image(label="PDF Page", type="pil", elem_classes="pdf-viewer-image")
|
171 |
+
stats_display = gr.Markdown("No PDF uploaded yet", elem_classes="stats-box")
|
172 |
+
|
173 |
+
with gr.Row(elem_classes="container"):
|
174 |
+
with gr.Column(scale=2, min_width=600):
|
175 |
+
chatbot = gr.Chatbot(height=500, bubble_full_width=False, show_copy_button=True, elem_classes="chat-container")
|
176 |
+
with gr.Row():
|
177 |
+
msg = gr.Textbox(show_label=False, placeholder="Ask about your technical document...", scale=5)
|
178 |
+
send_btn = gr.Button("Send", scale=1)
|
179 |
+
clear_btn = gr.Button("Clear Conversation")
|
180 |
+
|
181 |
+
# Event Handlers (unchanged)
|
182 |
+
upload_button.click(
|
183 |
+
process_pdf,
|
184 |
+
inputs=[pdf_file],
|
185 |
+
outputs=[current_session_id, pdf_status, pdf_state]
|
186 |
+
).then(
|
187 |
+
update_pdf_viewer,
|
188 |
+
inputs=[pdf_state],
|
189 |
+
outputs=[page_slider, pdf_image, stats_display]
|
190 |
+
)
|
191 |
+
|
192 |
+
msg.submit(
|
193 |
+
generate_response,
|
194 |
+
inputs=[msg, current_session_id, model_dropdown, chatbot],
|
195 |
+
outputs=[chatbot]
|
196 |
+
).then(lambda: "", None, [msg])
|
197 |
+
|
198 |
+
send_btn.click(
|
199 |
+
generate_response,
|
200 |
+
inputs=[msg, current_session_id, model_dropdown, chatbot],
|
201 |
+
outputs=[chatbot]
|
202 |
+
).then(lambda: "", None, [msg])
|
203 |
+
|
204 |
+
clear_btn.click(
|
205 |
+
lambda: ([], None, "No PDF uploaded yet", {"page_images": [], "total_pages": 0, "total_words": 0}, 0, None, "No PDF uploaded yet"),
|
206 |
+
None,
|
207 |
+
[chatbot, current_session_id, pdf_status, pdf_state, page_slider, pdf_image, stats_display]
|
208 |
+
)
|
209 |
+
|
210 |
+
page_slider.change(
|
211 |
+
update_image,
|
212 |
+
inputs=[page_slider, pdf_state],
|
213 |
+
outputs=[pdf_image]
|
214 |
+
)
|
215 |
+
|
216 |
+
# Launch the app
|
217 |
+
if __name__ == "__main__":
|
218 |
+
demo.launch()
|