import os import tempfile import uuid import base64 import io import json import re from datetime import datetime, timedelta # Third-party imports import gradio as gr import groq import numpy as np import pandas as pd import openpyxl import requests import fitz # PyMuPDF from PIL import Image from dotenv import load_dotenv from transformers import AutoProcessor, AutoModelForVision2Seq import torch # LangChain imports from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_community.vectorstores import FAISS from langchain.text_splitter import RecursiveCharacterTextSplitter # Load environment variables load_dotenv() client = groq.Client(api_key=os.getenv("GROQ_TECH_API_KEY")) embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2") # Directory to store FAISS indexes FAISS_INDEX_DIR = "faiss_indexes_tech" if not os.path.exists(FAISS_INDEX_DIR): os.makedirs(FAISS_INDEX_DIR) # Dictionary to store user-specific vectorstores user_vectorstores = {} # Load SmolDocling model for image analysis def load_docling_model(): try: processor = AutoProcessor.from_pretrained("ds4sd/SmolDocling-256M-preview") model = AutoModelForVision2Seq.from_pretrained("ds4sd/SmolDocling-256M-preview") return processor, model except Exception as e: print(f"Error loading SmolDocling model: {e}") return None, None # Initialize SmolDocling model docling_processor, docling_model = load_docling_model() # Custom CSS for Tech theme custom_css = """ :root { --primary-color: #4285F4; /* Google Blue */ --secondary-color: #34A853; /* Google Green */ --light-background: #F8F9FA; --dark-text: #202124; --white: #FFFFFF; --border-color: #DADCE0; --code-bg: #F1F3F4; --code-text: #37474F; --error-color: #EA4335; /* Google Red */ --warning-color: #FBBC04; /* Google Yellow */ } body { background-color: var(--light-background); font-family: 'Google Sans', 'Roboto', sans-serif; } .container { max-width: 1200px !important; margin: 0 auto !important; padding: 10px; } .header { background-color: var(--white); border-bottom: 1px solid var(--border-color); padding: 15px 0; margin-bottom: 20px; border-radius: 12px 12px 0 0; box-shadow: 0 1px 2px rgba(0,0,0,0.05); } .header-title { color: var(--primary-color); font-size: 1.8rem; font-weight: 700; text-align: center; } .header-subtitle { color: var(--dark-text); font-size: 1rem; text-align: center; margin-top: 5px; } .chat-container { border-radius: 8px !important; box-shadow: 0 1px 3px rgba(0,0,0,0.1) !important; background-color: var(--white) !important; border: 1px solid var(--border-color) !important; min-height: 500px; } .message-user { background-color: var(--primary-color) !important; color: var(--white) !important; border-radius: 18px 18px 4px 18px !important; padding: 12px 16px !important; margin-left: auto !important; max-width: 80% !important; } .message-bot { background-color: #F1F3F4 !important; color: var(--dark-text) !important; border-radius: 18px 18px 18px 4px !important; padding: 12px 16px !important; margin-right: auto !important; max-width: 80% !important; } .input-area { background-color: var(--white) !important; border-top: 1px solid var(--border-color) !important; padding: 12px !important; border-radius: 0 0 12px 12px !important; } .input-box { border: 1px solid var(--border-color) !important; border-radius: 24px !important; padding: 12px 16px !important; box-shadow: 0 1px 2px rgba(0,0,0,0.05) !important; } .send-btn { background-color: var(--primary-color) !important; border-radius: 24px !important; color: var(--white) !important; padding: 10px 20px !important; font-weight: 500 !important; } .clear-btn { background-color: #F1F3F4 !important; border: 1px solid var(--border-color) !important; border-radius: 24px !important; color: var(--dark-text) !important; padding: 8px 16px !important; font-weight: 500 !important; } .pdf-viewer-container { border-radius: 8px !important; box-shadow: 0 1px 3px rgba(0,0,0,0.1) !important; background-color: var(--white) !important; border: 1px solid var(--border-color) !important; padding: 20px; } .pdf-viewer-image { max-width: 100%; height: auto; border: 1px solid var(--border-color); border-radius: 8px; box-shadow: 0 1px 2px rgba(0,0,0,0.05); } .stats-box { background-color: #E8F0FE; padding: 10px; border-radius: 8px; margin-top: 10px; } .tool-container { background-color: var(--white); border-radius: 8px; box-shadow: 0 1px 3px rgba(0,0,0,0.1); padding: 15px; margin-bottom: 20px; border: 1px solid var(--border-color); } .code-block { background-color: var(--code-bg); color: var(--code-text); padding: 12px; border-radius: 8px; font-family: 'Roboto Mono', monospace; overflow-x: auto; margin: 10px 0; border-left: 3px solid var(--primary-color); } .repo-card { border: 1px solid var(--border-color); padding: 15px; margin: 10px 0; border-radius: 8px; background-color: var(--white); } .repo-name { color: var(--primary-color); font-weight: bold; font-size: 1.1rem; margin-bottom: 5px; } .repo-description { color: var(--dark-text); font-size: 0.9rem; margin-bottom: 10px; } .repo-stats { display: flex; gap: 15px; color: #5F6368; font-size: 0.85rem; } .repo-stat { display: flex; align-items: center; gap: 5px; } .qa-card { border-left: 3px solid var(--secondary-color); padding: 10px 15px; margin: 15px 0; background-color: #F8F9FA; border-radius: 0 8px 8px 0; } .qa-title { font-weight: bold; color: var(--dark-text); margin-bottom: 5px; } .qa-body { color: var(--dark-text); font-size: 0.95rem; margin-bottom: 10px; } .qa-meta { display: flex; justify-content: space-between; color: #5F6368; font-size: 0.85rem; } .tag { background-color: #E8F0FE; color: var(--primary-color); padding: 4px 8px; border-radius: 4px; font-size: 0.8rem; margin-right: 5px; display: inline-block; } .toggle-container { display: flex; align-items: center; margin-bottom: 15px; } .toggle-label { margin-right: 10px; font-weight: 500; } .search-toggle { margin-left: 5px; } .voice-btn { background-color: var(--primary-color) !important; border-radius: 50% !important; width: 44px !important; height: 44px !important; display: flex !important; align-items: center !important; justify-content: center !important; color: var(--white) !important; box-shadow: 0 2px 5px rgba(0,0,0,0.2) !important; } .speak-btn { background-color: var(--secondary-color) !important; border-radius: 24px !important; color: var(--white) !important; padding: 8px 16px !important; font-weight: 500 !important; margin-left: 10px !important; } .audio-controls { display: flex; align-items: center; margin-top: 10px; } /* Audio Visualization Elements */ .audio-visualization { display: flex; align-items: center; justify-content: center; gap: 4px; height: 40px; padding: 10px; background-color: rgba(0,0,0,0.05); border-radius: 12px; margin: 10px 0; } .audio-bar { width: 3px; background-color: var(--accent-color); border-radius: 2px; height: 5px; transition: height 0.1s ease; } .audio-status { font-size: 0.85rem; color: var(--secondary-color); text-align: center; margin-top: 5px; font-style: italic; } .recording-indicator { width: 12px; height: 12px; border-radius: 50%; background-color: #ff4b4b; margin-right: 8px; animation: blink 1s infinite; } .playing-indicator { width: 12px; height: 12px; border-radius: 50%; background-color: #4bff4b; margin-right: 8px; animation: pulse 1s infinite; } @keyframes blink { 0% { opacity: 1; } 50% { opacity: 0.4; } 100% { opacity: 1; } } @keyframes pulse { 0% { transform: scale(1); } 50% { transform: scale(1.2); } 100% { transform: scale(1); } } .file-upload-enhancement .file-preview { max-height: 200px; overflow: auto; border: 1px solid var(--border-color); border-radius: 8px; padding: 10px; margin-top: 10px; background-color: rgba(0,0,0,0.02); } .excel-preview-table { width: 100%; border-collapse: collapse; font-size: 0.85rem; } .excel-preview-table th, .excel-preview-table td { border: 1px solid #ddd; padding: 4px 8px; text-align: left; } .excel-preview-table th { background-color: var(--secondary-color); color: white; } .excel-preview-table tr:nth-child(even) { background-color: rgba(0,0,0,0.03); } """ # Function to process PDF files def process_pdf(pdf_file): if pdf_file is None: return None, "No file uploaded", {"page_images": [], "total_pages": 0, "total_words": 0} try: session_id = str(uuid.uuid4()) with tempfile.NamedTemporaryFile(suffix=".pdf", delete=False) as temp_file: temp_file.write(pdf_file) pdf_path = temp_file.name doc = fitz.open(pdf_path) texts = [page.get_text() for page in doc] page_images = [] for page in doc: pix = page.get_pixmap() img_bytes = pix.tobytes("png") img_base64 = base64.b64encode(img_bytes).decode("utf-8") page_images.append(img_base64) total_pages = len(doc) total_words = sum(len(text.split()) for text in texts) doc.close() text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) chunks = text_splitter.create_documents(texts) vectorstore = FAISS.from_documents(chunks, embeddings) index_path = os.path.join(FAISS_INDEX_DIR, session_id) vectorstore.save_local(index_path) user_vectorstores[session_id] = vectorstore os.unlink(pdf_path) pdf_state = {"page_images": page_images, "total_pages": total_pages, "total_words": total_words} return session_id, f"✅ Successfully processed {len(chunks)} text chunks from your PDF", pdf_state except Exception as e: if "pdf_path" in locals() and os.path.exists(pdf_path): os.unlink(pdf_path) return None, f"Error processing PDF: {str(e)}", {"page_images": [], "total_pages": 0, "total_words": 0} # New function to process Excel files def process_excel(excel_file): if excel_file is None: return None, "No file uploaded", {"data_preview": "", "total_sheets": 0, "total_rows": 0} try: session_id = str(uuid.uuid4()) with tempfile.NamedTemporaryFile(suffix=".xlsx", delete=False) as temp_file: temp_file.write(excel_file) excel_path = temp_file.name # Read Excel file with pandas excel_data = pd.ExcelFile(excel_path) sheet_names = excel_data.sheet_names all_texts = [] total_rows = 0 # Process each sheet for sheet in sheet_names: df = pd.read_excel(excel_path, sheet_name=sheet) total_rows += len(df) # Convert dataframe to text for vectorization sheet_text = f"Sheet: {sheet}\n" sheet_text += df.to_string(index=False) all_texts.append(sheet_text) # Generate HTML preview of first sheet first_df = pd.read_excel(excel_path, sheet_name=0) preview_rows = min(10, len(first_df)) data_preview = first_df.head(preview_rows).to_html(classes="excel-preview-table", index=False) # Process for vectorstore text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) chunks = text_splitter.create_documents(all_texts) vectorstore = FAISS.from_documents(chunks, embeddings) index_path = os.path.join(FAISS_INDEX_DIR, session_id) vectorstore.save_local(index_path) user_vectorstores[session_id] = vectorstore os.unlink(excel_path) excel_state = {"data_preview": data_preview, "total_sheets": len(sheet_names), "total_rows": total_rows} return session_id, f"✅ Successfully processed {len(chunks)} text chunks from Excel file", excel_state except Exception as e: if "excel_path" in locals() and os.path.exists(excel_path): os.unlink(excel_path) return None, f"Error processing Excel file: {str(e)}", {"data_preview": "", "total_sheets": 0, "total_rows": 0} # Function to analyze image using SmolDocling def analyze_image(image_file): if image_file is None: return "No image uploaded. Please upload an image to analyze." if docling_processor is None or docling_model is None: return "SmolDocling model not loaded. Please check your installation." try: # Process the image - image_file is a filepath string from Gradio image = Image.open(image_file) # Use the SmolDocling model inputs = docling_processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = docling_model.generate( **inputs, max_new_tokens=512, temperature=0.1, do_sample=False ) # Decode the output result = docling_processor.batch_decode(outputs, skip_special_tokens=True)[0] # Format the result for display with technical emphasis analysis = f"## Technical Document Analysis Results\n\n{result}\n\n" analysis += "### Technical Insights\n\n" analysis += "* The analysis provides technical information extracted from the document image.\n" analysis += "* Consider this information as a starting point for further technical investigation.\n" analysis += "* For code snippets or technical specifications, verify accuracy before implementation.\n" return analysis except Exception as e: return f"Error analyzing image: {str(e)}" # Function to handle different file types def process_file(file_data, file_type): if file_data is None: return None, "No file uploaded", None if file_type == "pdf": return process_pdf(file_data) elif file_type == "excel": return process_excel(file_data) elif file_type == "image": # For image files, we'll just use them directly for analysis # But we'll return a session ID to maintain consistency session_id = str(uuid.uuid4()) return session_id, "✅ Image file ready for analysis", None else: return None, "Unsupported file type", None # Function for speech-to-text conversion def speech_to_text(): try: r = sr.Recognizer() with sr.Microphone() as source: r.adjust_for_ambient_noise(source) audio = r.listen(source) text = r.recognize_google(audio) return text except sr.UnknownValueError: return "Could not understand audio. Please try again." except sr.RequestError as e: return f"Error with speech recognition service: {e}" except Exception as e: return f"Error converting speech to text: {str(e)}" # Function for text-to-speech conversion def text_to_speech(text, history): if not text or not history: return None try: # Get the last bot response last_response = history[-1][1] # Convert text to speech tts = pyttsx3.init() tts.setProperty('rate', 150) tts.setProperty('volume', 0.9) tts.save_to_file(last_response, "temp_output.mp3") tts.runAndWait() return "temp_output.mp3" except Exception as e: print(f"Error in text-to-speech: {e}") return None # Function to generate chatbot responses with Tech theme def generate_response(message, session_id, model_name, history, web_search_enabled=True): if not message: return history try: context = "" if session_id and session_id in user_vectorstores: vectorstore = user_vectorstores[session_id] docs = vectorstore.similarity_search(message, k=3) if docs: context = "\n\nRelevant information from uploaded PDF:\n" + "\n".join(f"- {doc.page_content}" for doc in docs) # Check if it's a GitHub repo search and web search is enabled if web_search_enabled and re.match(r'^/github\s+.+', message, re.IGNORECASE): query = re.sub(r'^/github\s+', '', message, flags=re.IGNORECASE) repo_results = search_github_repos(query) if repo_results: response = "**GitHub Repository Search Results:**\n\n" for repo in repo_results[:3]: # Limit to top 3 results response += f"**[{repo['name']}]({repo['html_url']})**\n" if repo['description']: response += f"{repo['description']}\n" response += f"⭐ {repo['stargazers_count']} | 🍴 {repo['forks_count']} | Language: {repo['language'] or 'Not specified'}\n" response += f"Updated: {repo['updated_at'][:10]}\n\n" history.append((message, response)) return history else: history.append((message, "No GitHub repositories found for your query.")) return history # Check if it's a Stack Overflow search and web search is enabled if web_search_enabled and re.match(r'^/stack\s+.+', message, re.IGNORECASE): query = re.sub(r'^/stack\s+', '', message, flags=re.IGNORECASE) qa_results = search_stackoverflow(query) if qa_results: response = "**Stack Overflow Search Results:**\n\n" for qa in qa_results[:3]: # Limit to top 3 results response += f"**[{qa['title']}]({qa['link']})**\n" response += f"Score: {qa['score']} | Answers: {qa['answer_count']}\n" if 'tags' in qa and qa['tags']: response += f"Tags: {', '.join(qa['tags'][:5])}\n" response += f"Asked: {qa['creation_date']}\n\n" history.append((message, response)) return history else: history.append((message, "No Stack Overflow questions found for your query.")) return history # Check if it's a code explanation request code_match = re.search(r'/explain\s+```(?:.+?)?\n(.+?)```', message, re.DOTALL) if code_match: code = code_match.group(1).strip() explanation = explain_code(code) history.append((message, explanation)) return history system_prompt = "You are a technical assistant specializing in software development, programming, and IT topics." system_prompt += " Format code snippets with proper markdown code blocks with language specified." system_prompt += " For technical explanations, be precise and include examples where helpful." if context: system_prompt += " Use the following context to answer the question if relevant: " + context completion = client.chat.completions.create( model=model_name, messages=[ {"role": "system", "content": system_prompt}, {"role": "user", "content": message} ], temperature=0.7, max_tokens=1024 ) response = completion.choices[0].message.content history.append((message, response)) return history except Exception as e: history.append((message, f"Error generating response: {str(e)}")) return history # Functions to update PDF viewer def update_pdf_viewer(pdf_state): if not pdf_state["total_pages"]: return 0, None, "No PDF uploaded yet" try: img_data = base64.b64decode(pdf_state["page_images"][0]) img = Image.open(io.BytesIO(img_data)) return pdf_state["total_pages"], img, f"**Total Pages:** {pdf_state['total_pages']}\n**Total Words:** {pdf_state['total_words']}" except Exception as e: print(f"Error decoding image: {e}") return 0, None, "Error displaying PDF" def update_image(page_num, pdf_state): if not pdf_state["total_pages"] or page_num < 1 or page_num > pdf_state["total_pages"]: return None try: img_data = base64.b64decode(pdf_state["page_images"][page_num - 1]) img = Image.open(io.BytesIO(img_data)) return img except Exception as e: print(f"Error decoding image: {e}") return None # GitHub API integration def search_github_repos(query, sort="stars", order="desc", per_page=10): """Search for GitHub repositories""" try: github_token = os.getenv("GITHUB_TOKEN", "") headers = {} if github_token: headers["Authorization"] = f"token {github_token}" params = { "q": query, "sort": sort, "order": order, "per_page": per_page } response = requests.get( "https://api.github.com/search/repositories", headers=headers, params=params ) if response.status_code != 200: print(f"GitHub API Error: {response.status_code} - {response.text}") return [] data = response.json() return data.get("items", []) except Exception as e: print(f"Error in GitHub search: {e}") return [] # Stack Overflow API integration def search_stackoverflow(query, sort="votes", site="stackoverflow", pagesize=10): """Search for questions on Stack Overflow""" try: params = { "order": "desc", "sort": sort, "site": site, "pagesize": pagesize, "intitle": query } response = requests.get( "https://api.stackexchange.com/2.3/search/advanced", params=params ) if response.status_code != 200: print(f"Stack Exchange API Error: {response.status_code} - {response.text}") return [] data = response.json() # Process results to convert Unix timestamps to readable dates for item in data.get("items", []): if "creation_date" in item: item["creation_date"] = datetime.fromtimestamp(item["creation_date"]).strftime("%Y-%m-%d") return data.get("items", []) except Exception as e: print(f"Error in Stack Overflow search: {e}") return [] def get_stackoverflow_answers(question_id, site="stackoverflow"): """Get answers for a specific question on Stack Overflow""" try: params = { "order": "desc", "sort": "votes", "site": site, "filter": "withbody" # Include the answer body in the response } response = requests.get( f"https://api.stackexchange.com/2.3/questions/{question_id}/answers", params=params ) if response.status_code != 200: print(f"Stack Exchange API Error: {response.status_code} - {response.text}") return [] data = response.json() # Process results for item in data.get("items", []): if "creation_date" in item: item["creation_date"] = datetime.fromtimestamp(item["creation_date"]).strftime("%Y-%m-%d") return data.get("items", []) except Exception as e: print(f"Error getting Stack Overflow answers: {e}") return [] def explain_code(code): """Explain code using LLM""" try: system_prompt = "You are an expert programmer and code reviewer. Your task is to explain the provided code in a clear, concise manner. Include:" system_prompt += "\n1. What the code does (high-level overview)" system_prompt += "\n2. Key functions/components and their purposes" system_prompt += "\n3. Potential issues or optimization opportunities" system_prompt += "\n4. Any best practices that are followed or violated" completion = client.chat.completions.create( model="llama3-70b-8192", # Using more capable model for code explanation messages=[ {"role": "system", "content": system_prompt}, {"role": "user", "content": f"Explain this code:\n```\n{code}\n```"} ], temperature=0.3, max_tokens=1024 ) explanation = completion.choices[0].message.content return f"**Code Explanation:**\n\n{explanation}" except Exception as e: return f"Error explaining code: {str(e)}" def perform_repo_search(query, language, sort_by, min_stars): """Perform GitHub repository search with UI parameters""" try: if not query: return "Please enter a search query" # Build the search query with filters search_query = query if language and language != "any": search_query += f" language:{language}" if min_stars and min_stars != "0": search_query += f" stars:>={min_stars}" # Map sort_by to GitHub API parameters sort_param = "stars" if sort_by == "updated": sort_param = "updated" elif sort_by == "forks": sort_param = "forks" results = search_github_repos(search_query, sort=sort_param) if not results: return "No repositories found. Try different search terms." # Format results as markdown markdown = "## GitHub Repository Search Results\n\n" for i, repo in enumerate(results, 1): markdown += f"### {i}. [{repo['full_name']}]({repo['html_url']})\n\n" if repo['description']: markdown += f"{repo['description']}\n\n" markdown += f"**Language:** {repo['language'] or 'Not specified'}\n" markdown += f"**Stars:** {repo['stargazers_count']} | **Forks:** {repo['forks_count']} | **Watchers:** {repo['watchers_count']}\n" markdown += f"**Created:** {repo['created_at'][:10]} | **Updated:** {repo['updated_at'][:10]}\n\n" if repo.get('topics'): markdown += f"**Topics:** {', '.join(repo['topics'])}\n\n" if repo.get('license') and repo['license'].get('name'): markdown += f"**License:** {repo['license']['name']}\n\n" markdown += f"[View Repository]({repo['html_url']}) | [Clone URL]({repo['clone_url']})\n\n" markdown += "---\n\n" return markdown except Exception as e: return f"Error searching for repositories: {str(e)}" def perform_stack_search(query, tag, sort_by): """Perform Stack Overflow search with UI parameters""" try: if not query: return "Please enter a search query" # Add tag to query if specified if tag and tag != "any": query_with_tag = f"{query} [tag:{tag}]" else: query_with_tag = query # Map sort_by to Stack Exchange API parameters sort_param = "votes" if sort_by == "newest": sort_param = "creation" elif sort_by == "activity": sort_param = "activity" results = search_stackoverflow(query_with_tag, sort=sort_param) if not results: return "No questions found. Try different search terms." # Format results as markdown markdown = "## Stack Overflow Search Results\n\n" for i, question in enumerate(results, 1): markdown += f"### {i}. [{question['title']}]({question['link']})\n\n" # Score and answer stats markdown += f"**Score:** {question['score']} | **Answers:** {question['answer_count']}" if question.get('is_answered'): markdown += " ✓ (Accepted answer available)" markdown += "\n\n" # Tags if question.get('tags'): markdown += "**Tags:** " for tag in question['tags']: markdown += f"`{tag}` " markdown += "\n\n" # Asked info markdown += f"**Asked:** {question['creation_date']} | **Views:** {question.get('view_count', 'N/A')}\n\n" markdown += f"[View Question]({question['link']})\n\n" markdown += "---\n\n" return markdown except Exception as e: return f"Error searching Stack Overflow: {str(e)}" # Gradio interface with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo: current_session_id = gr.State(None) pdf_state = gr.State({"page_images": [], "total_pages": 0, "total_words": 0}) excel_state = gr.State({"data_preview": "", "total_sheets": 0, "total_rows": 0}) file_type = gr.State("none") audio_status = gr.State("Ready") gr.HTML("""