Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,11 @@
|
|
1 |
import gradio
|
2 |
-
from transformers import pipeline
|
|
|
3 |
|
4 |
# Initialize the Hugging Face model
|
5 |
-
model = pipeline(model='google/flan-t5-base')
|
|
|
|
|
6 |
|
7 |
|
8 |
# Define the chatbot function
|
@@ -10,10 +13,14 @@ def chatbot(input_text):
|
|
10 |
|
11 |
prompt = f"Give the answer of the given input in context from the bhagwat geeta. give suggestions to user which are based upon the meanings of shlok in bhagwat geeta, input = {input_text}"
|
12 |
# Generate a response from the Hugging Face model
|
13 |
-
response = model(prompt, max_length=250, do_sample=True)[0]['generated_text'].strip()
|
|
|
|
|
|
|
|
|
14 |
|
15 |
# Return the bot response
|
16 |
-
return
|
17 |
|
18 |
# Define the Gradio interface
|
19 |
gradio_interface = gradio.Interface(
|
|
|
1 |
import gradio
|
2 |
+
# from transformers import pipeline
|
3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
|
5 |
# Initialize the Hugging Face model
|
6 |
+
# model = pipeline(model='google/flan-t5-base')
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b")
|
8 |
+
model = AutoModelForCausalLM.from_pretrained("google/gemma-7b")
|
9 |
|
10 |
|
11 |
# Define the chatbot function
|
|
|
13 |
|
14 |
prompt = f"Give the answer of the given input in context from the bhagwat geeta. give suggestions to user which are based upon the meanings of shlok in bhagwat geeta, input = {input_text}"
|
15 |
# Generate a response from the Hugging Face model
|
16 |
+
# response = model(prompt, max_length=250, do_sample=True)[0]['generated_text'].strip()
|
17 |
+
input_text = "Write me a poem about Machine Learning."
|
18 |
+
input_ids = tokenizer(prompt, return_tensors="pt")
|
19 |
+
|
20 |
+
outputs = model.generate(**input_ids)
|
21 |
|
22 |
# Return the bot response
|
23 |
+
return outputs
|
24 |
|
25 |
# Define the Gradio interface
|
26 |
gradio_interface = gradio.Interface(
|