Update app.py
Browse files
app.py
CHANGED
@@ -20,35 +20,57 @@
|
|
20 |
|
21 |
|
22 |
# Sample code for AI language model interaction
|
23 |
-
from transformers import GPT2Tokenizer, GPT2LMHeadModel
|
24 |
-
import gradio
|
25 |
|
26 |
|
27 |
-
def simptok(data):
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
|
33 |
-
|
34 |
-
|
35 |
|
36 |
-
|
37 |
-
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
43 |
|
|
|
|
|
|
|
44 |
|
45 |
-
|
46 |
-
|
47 |
|
|
|
|
|
|
|
48 |
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
|
|
51 |
inputs = "text",
|
52 |
outputs = "text"
|
53 |
)
|
54 |
gradio_interface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
|
22 |
# Sample code for AI language model interaction
|
23 |
+
# from transformers import GPT2Tokenizer, GPT2LMHeadModel
|
24 |
+
# import gradio
|
25 |
|
26 |
|
27 |
+
# def simptok(data):
|
28 |
+
# # Load pre-trained model and tokenizer (using the transformers library)
|
29 |
+
# model_name = "gpt2"
|
30 |
+
# tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
31 |
+
# model = GPT2LMHeadModel.from_pretrained(model_name)
|
32 |
|
33 |
+
# # User input
|
34 |
+
# user_input = data
|
35 |
|
36 |
+
# # Tokenize input
|
37 |
+
# input_ids = tokenizer.encode(user_input, return_tensors="pt")
|
38 |
|
39 |
+
# # Generate response
|
40 |
+
# output = model.generate(input_ids, max_length=50, num_return_sequences=1)
|
41 |
+
# response = tokenizer.decode(output[0], skip_special_tokens=True)
|
42 |
+
# return response
|
43 |
+
|
44 |
+
|
45 |
+
# def responsenew(data):
|
46 |
+
# return simptok(data)
|
47 |
+
|
48 |
|
49 |
+
from hugchat import hugchat
|
50 |
+
import gradio as gr
|
51 |
+
import time
|
52 |
|
53 |
+
# Create a chatbot connection
|
54 |
+
chatbot = hugchat.ChatBot(cookie_path="cookies.json")
|
55 |
|
56 |
+
# New a conversation (ignore error)
|
57 |
+
id = chatbot.new_conversation()
|
58 |
+
chatbot.change_conversation(id)
|
59 |
|
60 |
+
|
61 |
+
def get_answer(data):
|
62 |
+
return chatbot.chat(data)
|
63 |
+
|
64 |
+
gradio_interface = gr.Interface(
|
65 |
+
fn = get_answer,
|
66 |
inputs = "text",
|
67 |
outputs = "text"
|
68 |
)
|
69 |
gradio_interface.launch()
|
70 |
+
|
71 |
+
# gradio_interface = gradio.Interface(
|
72 |
+
# fn = responsenew,
|
73 |
+
# inputs = "text",
|
74 |
+
# outputs = "text"
|
75 |
+
# )
|
76 |
+
# gradio_interface.launch()
|