# from dotenv import load_dotenv # from langchain import HuggingFaceHub, LLMChain # from langchain import PromptTemplates # import gradio # load_dotenv() # os.getenv('HF_API') # hub_llm = HuggingFaceHub(repo_id='facebook/blenderbot-400M-distill') # prompt = prompt_templates( # input_variable = ["question"], # template = "Answer is: {question}" # ) # hub_chain = LLMChain(prompt=prompt, llm=hub_llm, verbose=True) # Sample code for AI language model interaction from transformers import GPT2Tokenizer, GPT2LMHeadModel import gradio def simptok(data): # Load pre-trained model and tokenizer (using the transformers library) model_name = "gpt2" tokenizer = GPT2Tokenizer.from_pretrained(model_name) model = GPT2LMHeadModel.from_pretrained(model_name) # User input user_input = data # Tokenize input input_ids = tokenizer.encode(user_input, return_tensors="pt") # Generate response output = model.generate(input_ids, max_length=50, num_return_sequences=1) response = tokenizer.decode(output[0], skip_special_tokens=True) print(response) def responsenew(data): return simptok(data) gradio_interface = gradio.Interface( fn = responsenew, inputs = "text", outputs = "text" ) gradio_interface.launch()