File size: 3,403 Bytes
f0dc90a
 
 
 
14105f6
f0dc90a
14105f6
f0dc90a
 
14105f6
 
 
f0dc90a
 
dbde5f6
f0dc90a
 
 
14105f6
9190a90
f0dc90a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0013c1
255e744
ba0a926
255e744
ba0a926
255e744
 
d3d1451
a0013c1
 
 
 
255e744
 
 
a0013c1
255e744
f0dc90a
255e744
f0dc90a
 
90afce1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import gradio as gr
from gpt4all import GPT4All
from huggingface_hub import hf_hub_download

title = "S O L A R"
description = """
Is it really that good? Let's see... (Note: This is a Q4 gguf so thst I can run it on the free cpu. Clone and upgrade for a getter version)
"""

model_path = "TheBloke/SOLAR-10.7B-Instruct-v1.0-GGUF"
model_name = "solar-10.7b-instruct-v1.0.Q4_0.gguf"
hf_hub_download(repo_id="TheBloke/SOLAR-10.7B-Instruct-v1.0-GGUF", filename=model_name, local_dir=model_path, local_dir_use_symlinks=True)

print("Start the model init process")
model = model = GPT4All(model_name, model_path, allow_download = True, device="cpu")
print("Finish the model init process")

model.config["promptTemplate"] = "[INST] {0} [/INST]"
model.config["systemPrompt"] = "You are a helpful assistant named SOLAR."
model._is_chat_session_activated = True

max_new_tokens = 2048

def generater(message, history, temperature, top_p, top_k):
    prompt = "<s>"
    for user_message, assistant_message in history:
        prompt += model.config["promptTemplate"].format(user_message)
        prompt += assistant_message + "</s>"
    prompt += model.config["promptTemplate"].format(message)
    outputs = []    
    for token in model.generate(prompt=prompt, temp=temperature, top_k = top_k, top_p = top_p, max_tokens = max_new_tokens, streaming=True):
        outputs.append(token)
        yield "".join(outputs)

def vote(data: gr.LikeData):
    if data.liked:
        return
    else:
        return

chatbot = gr.Chatbot(avatar_images=('resourse/user-icon.png', 'resourse/chatbot-icon.png'),bubble_full_width = False)

additional_inputs=[
    gr.Slider(
        label="temperature",
        value=0.5,
        minimum=0.0,
        maximum=2.0,
        step=0.05,
        interactive=True,
        info="Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic.",
    ),
    gr.Slider(
        label="top_p",
        value=1.0,
        minimum=0.0,
        maximum=1.0,
        step=0.01,
        interactive=True,
        info="0.1 means only the tokens comprising the top 10% probability mass are considered. Suggest set to 1 and use temperature. 1 means 100% and will disable it",
    ),
    gr.Slider(
        label="top_k",
        value=40,
        minimum=0,
        maximum=1000,
        step=1,
        interactive=True,
        info="limits candidate tokens to a fixed number after sorting by probability. Setting it higher than the vocabulary size deactivates this limit.",
    )
]


iface = gr.ChatInterface(
    fn = generater,
    title=title,
    description = description,
    additional_inputs=additional_inputs,
    examples=[
        ["Can you tell me how the Namib Desert Beetle inspires water collection methods?"],
        ["I'm working on a project related to sustainable architecture. How can biomimicry guide my design process?"],
        ["Can you explain the concept of biomimicry and its importance in today’s world?"],
        ["I need some ideas for a biomimicry project in my biology class. Can you suggest some organisms to study?"],
        ["How does the structure of a lotus leaf help in creating self-cleaning surfaces?"]
    ]
)


with gr.Blocks(css="resourse/style/custom.css") as demo:
    chatbot.like(vote, None, None)
    iface.render()

if __name__ == "__main__":
    demo.queue().launch()