Tonioesparza commited on
Commit
2ebd0eb
·
verified ·
1 Parent(s): 74e148e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +36 -39
app.py CHANGED
@@ -1,5 +1,5 @@
1
  import gradio as gr
2
- import numpy as numpy
3
  from diffusers import StableDiffusionXLControlNetInpaintPipeline
4
  from diffusers import StableDiffusionXLImg2ImgPipeline, DPMSolverMultistepScheduler, AutoencoderTiny, StableDiffusionXLControlNetPipeline, ControlNetModel
5
  from diffusers.utils import load_image
@@ -30,7 +30,22 @@ controlnets = [
30
  ),
31
  ]
32
 
33
- def ourhood_inference(prompt1=str,num_inference_steps=int,scaffold=int):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
 
35
  ###pro_encode = pipe_cn.encode_text(prompt)
36
 
@@ -44,22 +59,17 @@ def ourhood_inference(prompt1=str,num_inference_steps=int,scaffold=int):
44
  'canny_image':"https://huggingface.co/Tonioesparza/ourhood_training_dreambooth_lora_2_0/blob/main/mask_depth_solo_square.png"},
45
  2:{'mask1':"https://huggingface.co/Tonioesparza/ourhood_training_dreambooth_lora_2_0/blob/main/mask_in_C.png",
46
  'depth_image':"https://huggingface.co/Tonioesparza/ourhood_training_dreambooth_lora_2_0/blob/main/depth_C.png",
47
- 'canny_image':"https://huggingface.co/Tonioesparza/ourhood_training_dreambooth_lora_2_0/blob/main/canny_C.png"},
48
  3:{'mask1':"https://huggingface.co/Tonioesparza/ourhood_training_dreambooth_lora_2_0/blob/main/mask_in_B.png",
49
  'depth_image':"https://huggingface.co/Tonioesparza/ourhood_training_dreambooth_lora_2_0/blob/main/depth_B.png",
50
- 'canny_image':"https://huggingface.co/Tonioesparza/ourhood_training_dreambooth_lora_2_0/blob/main/canny_B.png"}}
51
 
52
 
53
- pipe_CN = StableDiffusionXLControlNetPipeline.from_pretrained("SG161222/RealVisXL_V5.0", torch_dtype=torch.float16,controlnet=controlnets[0], use_safetensors=True, variant='fp16')
54
- pipe_CN.vae = AutoencoderTiny.from_pretrained("madebyollin/taesdxl", torch_dtype=torch.float16)
55
- pipe_CN.scheduler=DPMSolverSDEScheduler.from_pretrained("SG161222/RealVisXL_V5.0",subfolder="scheduler",use_karras_sigmas=True)
56
- ###pipe_CN.scheduler=DPMSolverMultistepScheduler.from_pretrained("SG161222/RealVisXL_V5.0",subfolder="scheduler",use_karras_sigmas=True)
57
- ###pipe_CN.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl.bin")
58
- pipe_CN.to("cuda")
59
 
60
  ##############################load loras
61
 
62
- pipe_CN.load_lora_weights('CreativesCombined/hb8_cases_dreambooth_lora_test_1_14', weight_name='pytorch_lora_weights.safetensors',adapter_name='cases')
63
  ###pipe_CN.fuse_lora()
64
 
65
  output_height = 1024
@@ -70,7 +80,7 @@ def ourhood_inference(prompt1=str,num_inference_steps=int,scaffold=int):
70
  ###ip_images init
71
  ###ip_img_1 = load_image(r"C:\Users\AntonioEsparzaGlisma\PycharmProjects\hB8\Cases\a-place-to_210930_HAY_A-PLACE-TO_091-768x1024.png")
72
  ###ip_images = [[ip_img_1]]
73
- pipe_CN.set_ip_adapter_scale([[0.7]])
74
  n_steps = num_inference_steps
75
  ###precomputed depth image
76
  depth_image = load_image(scaff_dic[scaffold]['depth_image'])
@@ -89,18 +99,17 @@ def ourhood_inference(prompt1=str,num_inference_steps=int,scaffold=int):
89
  num_inference_steps=n_steps,
90
  num_images_per_prompt=1,
91
  generator=generator,
92
- denoising_end=0.9,
93
- image=images_CN[0],
94
  output_type="latent",
95
- control_guidance_end=0.25,
96
- controlnet_conditioning_scale=0.5,
 
97
  ).images[0]
98
 
99
- refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0",text_encoder_2=pipe_CN.text_encoder_2,vae=pipe_CN.vae,torch_dtype=torch.float16,use_safetensors=True,variant="fp16")
100
- refiner.to("cuda")
101
 
102
- del pipe_CN
103
- torch.cuda.empty_cache()
104
 
105
  image = refiner(
106
  prompt=prompt1,
@@ -108,12 +117,9 @@ def ourhood_inference(prompt1=str,num_inference_steps=int,scaffold=int):
108
  denoising_start=0.8,
109
  image=results).images[0]
110
 
111
- del refiner
112
- torch.cuda.empty_cache()
113
 
114
- pipe_IN = StableDiffusionXLControlNetInpaintPipeline.from_pretrained("diffusers/stable-diffusion-xl-1.0-inpainting-0.1",controlnet=controlnets, torch_dtype=torch.float16, variant="fp16").to("cuda")
115
- pipe_IN.load_lora_weights('Tonioesparza/ourhood_training_dreambooth_lora_2_0', weight_name='pytorch_lora_weights.safetensors',adapter_name='ourhood')
116
- pipe_IN.to("cuda")
117
 
118
  image = pipe_IN(
119
  prompt=prompt2,
@@ -121,16 +127,15 @@ def ourhood_inference(prompt1=str,num_inference_steps=int,scaffold=int):
121
  image=image,
122
  mask_image=mask1,
123
  num_inference_steps=n_steps,
124
- strength=0.95,
125
- control_guidance_end=[0.3,0.9],
126
  controlnet_conditioning_scale=[0.3, 0.45],
127
  control_image=images_CN,
128
  generator=generator,
129
  ).images[0]
130
 
131
- image.show()
132
- del pipe_IN
133
- torch.cuda.empty_cache()
134
 
135
  return image
136
 
@@ -201,17 +206,9 @@ with gr.Blocks(css=css) as demo:
201
  value=0,
202
  )
203
 
204
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
205
 
206
  with gr.Row():
207
 
208
- fracc = gr.Slider(
209
- label="¨seed",
210
- minimum=0,
211
- maximum=9999,
212
- step=1,
213
- value=0, #Replace with defaults that work for your model
214
- )
215
 
216
  num_inference_steps = gr.Slider(
217
  label="Number of inference steps",
@@ -228,7 +225,7 @@ with gr.Blocks(css=css) as demo:
228
  gr.on(
229
  triggers=[run_button.click, prompt.submit],
230
  fn = ourhood_inference,
231
- inputs = [prompt, num_inference_steps, perspective],
232
  outputs = [result]
233
  )
234
 
 
1
  import gradio as gr
2
+ import numpy as np
3
  from diffusers import StableDiffusionXLControlNetInpaintPipeline
4
  from diffusers import StableDiffusionXLImg2ImgPipeline, DPMSolverMultistepScheduler, AutoencoderTiny, StableDiffusionXLControlNetPipeline, ControlNetModel
5
  from diffusers.utils import load_image
 
30
  ),
31
  ]
32
 
33
+ pipe_CN = StableDiffusionXLControlNetPipeline.from_pretrained("SG161222/RealVisXL_V5.0", torch_dtype=torch.float16,controlnet=controlnets, use_safetensors=True, variant='fp16')
34
+ pipe_CN.vae = AutoencoderTiny.from_pretrained("madebyollin/taesdxl", torch_dtype=torch.float16)
35
+ pipe_CN.scheduler=DPMSolverSDEScheduler.from_pretrained("SG161222/RealVisXL_V5.0",subfolder="scheduler",use_karras_sigmas=True)
36
+ ###pipe_CN.scheduler=DPMSolverMultistepScheduler.from_pretrained("SG161222/RealVisXL_V5.0",subfolder="scheduler",use_karras_sigmas=True)
37
+ ###pipe_CN.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl.bin")
38
+ pipe_CN.to("cuda")
39
+ pipe_CN.load_lora_weights('CreativesCombined/hb8_cases_dreambooth_lora_test_1_14', weight_name='pytorch_lora_weights.safetensors',adapter_name='cases')
40
+
41
+ refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0",text_encoder_2=pipe_CN.text_encoder_2,vae=pipe_CN.vae,torch_dtype=torch.float16,use_safetensors=True,variant="fp16")
42
+ refiner.to("cuda")
43
+
44
+ pipe_IN = StableDiffusionXLControlNetInpaintPipeline.from_pretrained("diffusers/stable-diffusion-xl-1.0-inpainting-0.1",controlnet=controlnets, torch_dtype=torch.float16, variant="fp16").to("cuda")
45
+ pipe_IN.load_lora_weights('Tonioesparza/ourhood_training_dreambooth_lora_2_0', weight_name='pytorch_lora_weights.safetensors',adapter_name='ourhood')
46
+ pipe_IN.to("cuda")
47
+
48
+ def ourhood_inference(prompt1=str,num_inference_steps=int,scaffold=int,seed=int):
49
 
50
  ###pro_encode = pipe_cn.encode_text(prompt)
51
 
 
59
  'canny_image':"https://huggingface.co/Tonioesparza/ourhood_training_dreambooth_lora_2_0/blob/main/mask_depth_solo_square.png"},
60
  2:{'mask1':"https://huggingface.co/Tonioesparza/ourhood_training_dreambooth_lora_2_0/blob/main/mask_in_C.png",
61
  'depth_image':"https://huggingface.co/Tonioesparza/ourhood_training_dreambooth_lora_2_0/blob/main/depth_C.png",
62
+ 'canny_image':"https://huggingface.co/Tonioesparza/ourhood_training_dreambooth_lora_2_0/blob/main/canny_C_solo.png"},
63
  3:{'mask1':"https://huggingface.co/Tonioesparza/ourhood_training_dreambooth_lora_2_0/blob/main/mask_in_B.png",
64
  'depth_image':"https://huggingface.co/Tonioesparza/ourhood_training_dreambooth_lora_2_0/blob/main/depth_B.png",
65
+ 'canny_image':"https://huggingface.co/Tonioesparza/ourhood_training_dreambooth_lora_2_0/blob/main/canny_B_solo.png"}}
66
 
67
 
68
+
 
 
 
 
 
69
 
70
  ##############################load loras
71
 
72
+
73
  ###pipe_CN.fuse_lora()
74
 
75
  output_height = 1024
 
80
  ###ip_images init
81
  ###ip_img_1 = load_image(r"C:\Users\AntonioEsparzaGlisma\PycharmProjects\hB8\Cases\a-place-to_210930_HAY_A-PLACE-TO_091-768x1024.png")
82
  ###ip_images = [[ip_img_1]]
83
+ ###pipe_CN.set_ip_adapter_scale([[0.7]])
84
  n_steps = num_inference_steps
85
  ###precomputed depth image
86
  depth_image = load_image(scaff_dic[scaffold]['depth_image'])
 
99
  num_inference_steps=n_steps,
100
  num_images_per_prompt=1,
101
  generator=generator,
102
+ denoising_end=0.8,
103
+ image=images_CN,
104
  output_type="latent",
105
+ control_guidance_start=[0.0,0.5],
106
+ control_guidance_end=[0.5,1.0],
107
+ controlnet_conditioning_scale=[0.5,1.0],
108
  ).images[0]
109
 
 
 
110
 
111
+
112
+
113
 
114
  image = refiner(
115
  prompt=prompt1,
 
117
  denoising_start=0.8,
118
  image=results).images[0]
119
 
 
 
120
 
121
+
122
+
 
123
 
124
  image = pipe_IN(
125
  prompt=prompt2,
 
127
  image=image,
128
  mask_image=mask1,
129
  num_inference_steps=n_steps,
130
+ strength=1.0,
131
+ control_guidance_end=[0.9,0.9],
132
  controlnet_conditioning_scale=[0.3, 0.45],
133
  control_image=images_CN,
134
  generator=generator,
135
  ).images[0]
136
 
137
+
138
+
 
139
 
140
  return image
141
 
 
206
  value=0,
207
  )
208
 
 
209
 
210
  with gr.Row():
211
 
 
 
 
 
 
 
 
212
 
213
  num_inference_steps = gr.Slider(
214
  label="Number of inference steps",
 
225
  gr.on(
226
  triggers=[run_button.click, prompt.submit],
227
  fn = ourhood_inference,
228
+ inputs = [prompt, num_inference_steps, perspective,seed],
229
  outputs = [result]
230
  )
231