Tonioesparza commited on
Commit
e784fb2
·
verified ·
1 Parent(s): 9ec9da6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +30 -9
app.py CHANGED
@@ -30,12 +30,16 @@ controlnets = [
30
  ),
31
  ]
32
 
33
- pipe_CN = StableDiffusionXLControlNetPipeline.from_pretrained("SG161222/RealVisXL_V5.0", torch_dtype=torch.float16,controlnet=controlnets, use_safetensors=True, variant='fp16')
34
- pipe_CN.vae = AutoencoderTiny.from_pretrained("madebyollin/taesdxl", torch_dtype=torch.float16)
35
  pipe_CN.scheduler=DPMSolverSDEScheduler.from_pretrained("SG161222/RealVisXL_V5.0",subfolder="scheduler",use_karras_sigmas=True)
36
 
37
  pipe_CN.to("cuda")
38
- pipe_CN.load_lora_weights('CreativesCombined/hb8_cases_dreambooth_lora_test_1_14', weight_name='pytorch_lora_weights.safetensors',adapter_name='cases')
 
 
 
 
39
 
40
  refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0",text_encoder_2=pipe_CN.text_encoder_2,vae=pipe_CN.vae,torch_dtype=torch.float16,use_safetensors=True,variant="fp16")
41
  refiner.to("cuda")
@@ -44,7 +48,16 @@ pipe_IN = StableDiffusionXLControlNetInpaintPipeline.from_pretrained("diffusers/
44
  pipe_IN.load_lora_weights('Tonioesparza/ourhood_training_dreambooth_lora_2_0', weight_name='pytorch_lora_weights.safetensors',adapter_name='ourhood')
45
  pipe_IN.to("cuda")
46
 
47
- def ourhood_inference(prompt1=str,num_inference_steps=int,scaffold=int,seed=int):
 
 
 
 
 
 
 
 
 
48
 
49
  ###pro_encode = pipe_cn.encode_text(prompt)
50
 
@@ -76,6 +89,9 @@ def ourhood_inference(prompt1=str,num_inference_steps=int,scaffold=int,seed=int)
76
  mask1 = load_image(scaff_dic[scaffold]['mask1'])
77
  masks = processor_mask.preprocess([mask1], height=output_height, width=output_width)
78
  masks = [masks.reshape(1, masks.shape[0], masks.shape[2], masks.shape[3])]
 
 
 
79
  ###ip_images init
80
  ###ip_img_1 = load_image(r"C:\Users\AntonioEsparzaGlisma\PycharmProjects\hB8\Cases\a-place-to_210930_HAY_A-PLACE-TO_091-768x1024.png")
81
  ###ip_images = [[ip_img_1]]
@@ -84,8 +100,13 @@ def ourhood_inference(prompt1=str,num_inference_steps=int,scaffold=int,seed=int)
84
  ###precomputed depth image
85
  depth_image = load_image(scaff_dic[scaffold]['depth_image'])
86
  canny_image = load_image(scaff_dic[scaffold]['canny_image'])
 
 
 
87
  images_CN = [depth_image, canny_image]
88
 
 
 
89
  neg1 = 'text,watermark'
90
  prompt2 = 'Photorealistic rendering, of an OurHood privacy booth, with a silken oak frame, hickory stained melange polyester fabric, windows'
91
  neg2 = 'curtains, pillows'
@@ -98,8 +119,8 @@ def ourhood_inference(prompt1=str,num_inference_steps=int,scaffold=int,seed=int)
98
  num_inference_steps=n_steps,
99
  num_images_per_prompt=1,
100
  generator=generator,
101
- denoising_end=0.8,
102
- image=images_CN,
103
  output_type="latent",
104
  control_guidance_start=[0.0,0.5],
105
  control_guidance_end=[0.5,1.0],
@@ -113,7 +134,7 @@ def ourhood_inference(prompt1=str,num_inference_steps=int,scaffold=int,seed=int)
113
  image = refiner(
114
  prompt=prompt1,
115
  num_inference_steps=n_steps,
116
- denoising_start=0.8,
117
  image=results).images[0]
118
 
119
 
@@ -125,10 +146,10 @@ def ourhood_inference(prompt1=str,num_inference_steps=int,scaffold=int,seed=int)
125
  negative_prompt=neg2,
126
  image=image,
127
  mask_image=mask1,
128
- num_inference_steps=n_steps,
129
  strength=1.0,
130
  control_guidance_end=[0.9,0.9],
131
- controlnet_conditioning_scale=[0.3, 0.45],
132
  control_image=images_CN,
133
  generator=generator,
134
  ).images[0]
 
30
  ),
31
  ]
32
 
33
+ pipe_CN = StableDiffusionXLControlNetPipeline.from_pretrained("SG161222/RealVisXL_V5.0", torch_dtype=torch.float16,controlnet=[controlnets[0],controlnets[0]], use_safetensors=True, variant='fp16')
34
+ ###pipe_CN.vae = AutoencoderTiny.from_pretrained("madebyollin/taesdxl", torch_dtype=torch.float16)
35
  pipe_CN.scheduler=DPMSolverSDEScheduler.from_pretrained("SG161222/RealVisXL_V5.0",subfolder="scheduler",use_karras_sigmas=True)
36
 
37
  pipe_CN.to("cuda")
38
+ state_dict, network_alphas = StableDiffusionXLControlNetPipeline.lora_state_dict('CreativesCombined/hb8_cases_dreambooth_lora_test_1_14', weight_name='pytorch_lora_weights.safetensors')
39
+ pipe_CN.load_lora_into_unet(state_dict, network_alphas, pipe_CN.unet, adapter_name='unet_cases')
40
+ pipe_CN.load_lora_into_text_encoder(state_dict, network_alphas, pipe_CN.text_encoder, adapter_name='text_cases')
41
+ pipe_CN.load_lora_into_text_encoder(state_dict, network_alphas, pipe_CN.text_encoder ,prefix='2', adapter_name='text_2_cases')
42
+ pipe_CN.set_adapters(["unet_cases","text_cases","text_2_cases"], adapter_weights=[1.0, 0.5,0.5])
43
 
44
  refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0",text_encoder_2=pipe_CN.text_encoder_2,vae=pipe_CN.vae,torch_dtype=torch.float16,use_safetensors=True,variant="fp16")
45
  refiner.to("cuda")
 
48
  pipe_IN.load_lora_weights('Tonioesparza/ourhood_training_dreambooth_lora_2_0', weight_name='pytorch_lora_weights.safetensors',adapter_name='ourhood')
49
  pipe_IN.to("cuda")
50
 
51
+ def make_inpaint_condition(image, image_mask):
52
+ image = np.array(image.convert("RGB")).astype(np.float32) / 255.0
53
+ image_mask = np.array(image_mask.convert("L")).astype(np.float32) / 255.0
54
+ assert image.shape[0:1] == image_mask.shape[0:1]
55
+ image[image_mask > 0.5] = -1.0 # set as masked pixel
56
+ image = np.expand_dims(image, 0).transpose(0, 3, 1, 2)
57
+ image = torch.from_numpy(image)
58
+ return image
59
+
60
+ def ourhood_inference(prompt=str,num_inference_steps=int,scaffold=int,seed=int):
61
 
62
  ###pro_encode = pipe_cn.encode_text(prompt)
63
 
 
89
  mask1 = load_image(scaff_dic[scaffold]['mask1'])
90
  masks = processor_mask.preprocess([mask1], height=output_height, width=output_width)
91
  masks = [masks.reshape(1, masks.shape[0], masks.shape[2], masks.shape[3])]
92
+
93
+
94
+
95
  ###ip_images init
96
  ###ip_img_1 = load_image(r"C:\Users\AntonioEsparzaGlisma\PycharmProjects\hB8\Cases\a-place-to_210930_HAY_A-PLACE-TO_091-768x1024.png")
97
  ###ip_images = [[ip_img_1]]
 
100
  ###precomputed depth image
101
  depth_image = load_image(scaff_dic[scaffold]['depth_image'])
102
  canny_image = load_image(scaff_dic[scaffold]['canny_image'])
103
+
104
+ masked_depth=make_inpaint_condition(depth_image,mask1)
105
+
106
  images_CN = [depth_image, canny_image]
107
 
108
+
109
+ prompt1 = 'A frontpage still-life photograph, an 8-foot wooden crate, '+ prompt
110
  neg1 = 'text,watermark'
111
  prompt2 = 'Photorealistic rendering, of an OurHood privacy booth, with a silken oak frame, hickory stained melange polyester fabric, windows'
112
  neg2 = 'curtains, pillows'
 
119
  num_inference_steps=n_steps,
120
  num_images_per_prompt=1,
121
  generator=generator,
122
+ denoising_end=0.9,
123
+ image=[depth_image,masked_depth],
124
  output_type="latent",
125
  control_guidance_start=[0.0,0.5],
126
  control_guidance_end=[0.5,1.0],
 
134
  image = refiner(
135
  prompt=prompt1,
136
  num_inference_steps=n_steps,
137
+ denoising_start=0.9,
138
  image=results).images[0]
139
 
140
 
 
146
  negative_prompt=neg2,
147
  image=image,
148
  mask_image=mask1,
149
+ num_inference_steps=65,
150
  strength=1.0,
151
  control_guidance_end=[0.9,0.9],
152
+ controlnet_conditioning_scale=[0.35, 0.65],
153
  control_image=images_CN,
154
  generator=generator,
155
  ).images[0]