Spaces:
Sleeping
Sleeping
Commit
Β·
884d5f3
1
Parent(s):
71710c0
Added more models
Browse files- LRclassification_report.png +0 -0
- LRconfusion_matrix.png +0 -0
- LRspam_classifier_model.pkl +3 -0
- classification_report.png β MNBclassification_report.png +0 -0
- MNBconfusion_matrix.png +0 -0
- spam_classifier.pkl β MNBspam_classifier_model.pkl +0 -0
- SVM_classification_report.png +0 -0
- SVMconfusion_matrix.png +0 -0
- SVMspam_classifier.pkl +3 -0
- app.py +63 -27
- confusion_matrix.png +0 -0
- main.ipynb +0 -0
- tfidf_vectorizer.pkl +1 -1
LRclassification_report.png
ADDED
![]() |
LRconfusion_matrix.png
ADDED
![]() |
LRspam_classifier_model.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9ad0ce4dec8e20221e63ff8de41f9528b1ec07878189ab000a09f9607e6470a5
|
3 |
+
size 31663
|
classification_report.png β MNBclassification_report.png
RENAMED
File without changes
|
MNBconfusion_matrix.png
ADDED
![]() |
spam_classifier.pkl β MNBspam_classifier_model.pkl
RENAMED
File without changes
|
SVM_classification_report.png
ADDED
![]() |
SVMconfusion_matrix.png
ADDED
![]() |
SVMspam_classifier.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2ccca33faa944372b33275ba2fe09b795c1efaf780ee65c6fb6331e0607e8d12
|
3 |
+
size 106635
|
app.py
CHANGED
@@ -5,16 +5,26 @@ import string
|
|
5 |
import nltk
|
6 |
from nltk.corpus import stopwords
|
7 |
|
8 |
-
|
9 |
-
# LOAD THE MODEL AND VECTORIZERS
|
10 |
-
model = joblib.load("spam_classifier.pkl")
|
11 |
-
vectorizer = joblib.load("tfidf_vectorizer.pkl")
|
12 |
-
|
13 |
-
|
14 |
nltk.download("stopwords")
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
-
#
|
18 |
def preprocess_text(text):
|
19 |
text = text.lower()
|
20 |
text = re.sub(r"\d+", "", text)
|
@@ -23,14 +33,14 @@ def preprocess_text(text):
|
|
23 |
words = [word for word in words if word not in stopwords.words("english")]
|
24 |
return " ".join(words)
|
25 |
|
|
|
|
|
26 |
|
27 |
-
|
28 |
-
# STREAMLIT APP TAB 1
|
29 |
with app:
|
30 |
st.title("π© Spam Detector App")
|
31 |
st.write("Enter a message below to check if it's **Spam** or **Not Spam**.")
|
32 |
-
|
33 |
-
|
34 |
user_input = st.text_area("Enter your message:")
|
35 |
|
36 |
if st.button("Check Spam"):
|
@@ -40,29 +50,55 @@ with app:
|
|
40 |
prediction = model.predict(input_vector)
|
41 |
|
42 |
result = "Spam" if prediction[0] == 1 else "Not Spam"
|
43 |
-
st.success(f"Prediction: {result}")
|
44 |
else:
|
45 |
st.warning("Please enter a message to check.")
|
46 |
|
|
|
47 |
with model_eval:
|
48 |
-
|
49 |
st.header("Model Evaluation")
|
50 |
-
st.write("The Spam Detection model was trained
|
51 |
-
st.write("
|
52 |
-
|
53 |
-
#
|
54 |
st.title("Confusion Matrix")
|
55 |
-
st.write("The confusion matrix displays
|
56 |
-
st.write("True Positives (TP)
|
57 |
-
st.write("True Negatives (TN)
|
58 |
-
st.write("False Positives (FP)
|
59 |
-
st.write("False Negatives (FN)
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
st.title("Evaluation Metrics")
|
64 |
-
st.write("
|
65 |
-
st.image("classification_report.png")
|
66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
|
|
68 |
|
|
|
|
|
|
5 |
import nltk
|
6 |
from nltk.corpus import stopwords
|
7 |
|
8 |
+
# Download stopwords
|
|
|
|
|
|
|
|
|
|
|
9 |
nltk.download("stopwords")
|
10 |
|
11 |
+
# Sidebar Model Selection
|
12 |
+
st.sidebar.title("π Choose Model")
|
13 |
+
model_choice = st.sidebar.radio(
|
14 |
+
"Select a model for Spam Detection:",
|
15 |
+
("Naive Bayes", "Logistic Regression", "Support Vector Machine")
|
16 |
+
)
|
17 |
+
|
18 |
+
# Load selected model
|
19 |
+
model_paths = {
|
20 |
+
"Naive Bayes": "MNBspam_classifier_model.pkl",
|
21 |
+
"Logistic Regression": "LRspam_classifier_model.pkl",
|
22 |
+
"Support Vector Machine": "SVMspam_classifier.pkl"
|
23 |
+
}
|
24 |
+
model = joblib.load(model_paths[model_choice])
|
25 |
+
vectorizer = joblib.load("tfidf_vectorizer.pkl")
|
26 |
|
27 |
+
# Function to preprocess text
|
28 |
def preprocess_text(text):
|
29 |
text = text.lower()
|
30 |
text = re.sub(r"\d+", "", text)
|
|
|
33 |
words = [word for word in words if word not in stopwords.words("english")]
|
34 |
return " ".join(words)
|
35 |
|
36 |
+
# Tabs for Application & Model Evaluation
|
37 |
+
app, model_eval = st.tabs(["π© Application", "π Model Evaluation"])
|
38 |
|
39 |
+
# Spam Detector Application
|
|
|
40 |
with app:
|
41 |
st.title("π© Spam Detector App")
|
42 |
st.write("Enter a message below to check if it's **Spam** or **Not Spam**.")
|
43 |
+
|
|
|
44 |
user_input = st.text_area("Enter your message:")
|
45 |
|
46 |
if st.button("Check Spam"):
|
|
|
50 |
prediction = model.predict(input_vector)
|
51 |
|
52 |
result = "Spam" if prediction[0] == 1 else "Not Spam"
|
53 |
+
st.success(f"Prediction: {result} ({model_choice})")
|
54 |
else:
|
55 |
st.warning("Please enter a message to check.")
|
56 |
|
57 |
+
# Model Evaluation Tab
|
58 |
with model_eval:
|
|
|
59 |
st.header("Model Evaluation")
|
60 |
+
st.write("The Spam Detection model was trained to classify messages as 'Spam' or 'Not Spam'. The dataset was taken from Kaggle.")
|
61 |
+
st.write("Dataset by Faisal Qureshi: [Kaggle Link](https://www.kaggle.com/datasets/mfaisalqureshi/spam-email)")
|
62 |
+
|
63 |
+
# Confusion Matrix
|
64 |
st.title("Confusion Matrix")
|
65 |
+
st.write("The confusion matrix displays actual vs. predicted labels. Consider the following when interpreting it:")
|
66 |
+
st.write("- **True Positives (TP):** Correctly predicted Spam")
|
67 |
+
st.write("- **True Negatives (TN):** Correctly predicted Not Spam")
|
68 |
+
st.write("- **False Positives (FP):** Predicted Spam but was actually Not Spam (Type I error)")
|
69 |
+
st.write("- **False Negatives (FN):** Predicted Not Spam but was actually Spam (Type II error)")
|
70 |
+
|
71 |
+
st.header("Naive Bayes Confusion Matrix")
|
72 |
+
st.write("The image below represents the Confusion Matrix of the Naive Bayes model.")
|
73 |
+
st.image("MNBconfusion_matrix.png")
|
74 |
+
|
75 |
+
st.header("Logistic Regression Confusion Matrix")
|
76 |
+
st.write("The image below represents the Confusion Matrix of the Logistic Regression model.")
|
77 |
+
st.image("LRconfusion_matrix.png")
|
78 |
+
|
79 |
+
|
80 |
+
st.header("SVM Confusion Matrix")
|
81 |
+
st.write("The image below represents the Confusion Matrix of the SVM model.")
|
82 |
+
st.image("SVMconfusion_matrix.png")
|
83 |
+
|
84 |
+
|
85 |
+
# Evaluation Metrics
|
86 |
st.title("Evaluation Metrics")
|
87 |
+
st.write("Evaluation metrics help assess the performance of the spam detector.")
|
|
|
88 |
|
89 |
+
st.header("Naive Bayes Evaluation Metrics")
|
90 |
+
st.write("The image below represents the **Accuracy, F1 score, and classification report** of the Naive Bayes model.")
|
91 |
+
st.image("MNBclassification_report.png")
|
92 |
+
|
93 |
+
st.header("Logistic Regression Evaluation Metrics")
|
94 |
+
st.write("The image below represents the **Accuracy, F1 score, and classification report** of the Logistic Regression model.")
|
95 |
+
st.image("LRclassification_report.png")
|
96 |
+
|
97 |
+
st.header("SVM Evaluation Metrics")
|
98 |
+
st.write("The image below represents the **Accuracy, F1 score, and classification report** of the SVM model.")
|
99 |
+
st.image("SVM_classification_report.png")
|
100 |
|
101 |
+
# COMPARISON
|
102 |
|
103 |
+
st.header("Comparison")
|
104 |
+
st.write("Based on the confusion matrix and evaluation metrics, we can assume that out of the three classification algorithms chosen, Naive Bayes performs the best using this dataset")
|
confusion_matrix.png
DELETED
Binary file (16.6 kB)
|
|
main.ipynb
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
tfidf_vectorizer.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 78711
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c0b3264f32054f57cdda0912eaec6c6961c77902787d05dfe2255e0d532b5e55
|
3 |
size 78711
|