File size: 11,270 Bytes
413592b
 
 
d6e49e1
413592b
 
 
 
 
d6e49e1
e6218e4
3264dd4
7de02ad
 
d6e49e1
413592b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a95216
413592b
 
 
 
 
 
55203fb
413592b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7de02ad
 
 
 
 
5a95216
 
7de02ad
 
 
 
413592b
 
 
 
 
 
 
 
 
 
7de02ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a95216
7de02ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
413592b
7de02ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
413592b
 
d6e49e1
 
413592b
 
 
 
 
 
55203fb
413592b
 
7de02ad
 
3264dd4
d6e49e1
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
import PyPDF2
from openpyxl import load_workbook
from pptx import Presentation
import gradio as gr
import io
import re
import zipfile
import xml.etree.ElementTree as ET
import filetype
import requests
import os
import mimetypes
from bs4 import BeautifulSoup
from urllib.parse import urljoin

# Constants
CHUNK_SIZE = 32000

# --- Utility Functions ---

def xml2text(xml):
    """Extracts text from XML data."""
    text = u''
    root = ET.fromstring(xml)
    for child in root.iter():
        text += child.text + " " if child.text is not None else ''
    return text

def clean_text(content):
    """Cleans text content based on the 'clean' parameter."""
    content = content.replace('\n', ' ')
    content = content.replace('\r', ' ')
    content = content.replace('\t', ' ')
    content = re.sub(r'\s+', ' ', content)
    return content

def split_content(content, chunk_size=CHUNK_SIZE):
    """Splits content into chunks of a specified size."""
    chunks = []
    for i in range(0, len(content), chunk_size):
        chunks.append(content[i:i + chunk_size])
    return chunks

# --- Document Reading Functions ---

def extract_text_from_docx(docx_data, clean=True):
    """Extracts text from DOCX files."""
    text = u''
    zipf = zipfile.ZipFile(io.BytesIO(docx_data))

    filelist = zipf.namelist()

    header_xmls = 'word/header[0-9]*.xml'
    for fname in filelist:
        if re.match(header_xmls, fname):
            text += xml2text(zipf.read(fname))

    doc_xml = 'word/document.xml'
    text += xml2text(zipf.read(doc_xml))

    footer_xmls = 'word/footer[0-9]*.xml'
    for fname in filelist:
        if re.match(footer_xmls, fname):
            text += xml2text(zipf.read(fname))

    zipf.close()
    if clean:
        text = clean_text(text)
    return text, len(text)

def extract_text_from_pptx(pptx_data, clean=True):
    """Extracts text from PPT files."""
    text = u''
    zipf = zipfile.ZipFile(io.BytesIO(pptx_data))

    filelist = zipf.namelist()

    # Extract text from slide notes
    notes_xmls = 'ppt/notesSlides/notesSlide[0-9]*.xml'
    for fname in filelist:
        if re.match(notes_xmls, fname):
            text += xml2text(zipf.read(fname))

    # Extract text from slide content (shapes and text boxes)
    slide_xmls = 'ppt/slides/slide[0-9]*.xml'
    for fname in filelist:
        if re.match(slide_xmls, fname):
            text += xml2text(zipf.read(fname))

    zipf.close()
    if clean:
        text = clean_text(text)
    return text, len(text)

def read_document(file_path, clean=True, url=""):
    with open(file_path, "rb") as f:
        file_content = f.read()

    kind = filetype.guess(file_content)

    if kind is None:
        mime = "text/html"
    else:
        mime = kind.mime

    if mime == "application/pdf":
        try:
            pdf_reader = PyPDF2.PdfReader(io.BytesIO(file_content))
            content = ''
            for page in range(len(pdf_reader.pages)):
                content += pdf_reader.pages[page].extract_text()
            if clean:
                content = clean_text(content)
            return content, len(repr(content))
        except Exception as e:
            return f"Error reading PDF: {e}", 0
    elif mime == "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet":
        try:
            wb = load_workbook(io.BytesIO(file_content))
            content = ''
            for sheet in wb.worksheets:
                for row in sheet.rows:
                    for cell in row:
                        if cell.value is not None:
                            content += str(cell.value) + ' '
            if clean:
                content = clean_text(content)
            return content, len(repr(content))
        except Exception as e:
            return f"Error reading XLSX: {e}", 0
    elif mime == "text/plain":
        try:
            content = file_content.decode('utf-8')
            if clean:
                content = clean_text(content)
            return content, len(repr(content))
        except Exception as e:
            return f"Error reading TXT file: {e}", 0
    elif mime == "text/csv":
        try:
            content = file_content.decode('utf-8')
            if clean:
                content = clean_text(content)
            return content, len(repr(content))
        except Exception as e:
            return f"Error reading CSV file: {e}", 0
    elif mime == "application/vnd.openxmlformats-officedocument.wordprocessingml.document":
        try:
            return extract_text_from_docx(file_content, clean)
        except Exception as e:
            return f"Error reading DOCX: {e}", 0
    elif mime == "application/vnd.openxmlformats-officedocument.presentationml.presentation":
        try:
            return extract_text_from_pptx(file_content, clean)
        except Exception as e:
            return f"Error reading PPTX: {e}", 0
    elif mime == "text/html":  # Handle HTML content
        try:
            soup = BeautifulSoup(file_content, 'html.parser')
            structured_data = {
                "Texts": extract_texts(soup),
                "Links": extract_links(soup, url), 
                "Images": extract_images(soup, url)
            }
            return format_detailed_output(structured_data), 0
        except Exception as e:
            return f"Error parsing HTML content: {e}", 0
    else:
        try:
            content = file_content.decode('utf-8')
            if clean:
                content = clean_text(content)
            return content, len(repr(content))
        except Exception as e:
            return f"Error reading file: {e}", 0

def download_and_process_file(url, clean=True):
    """Downloads a file from a URL and returns the local file path."""
    if not url.startswith("http://") and not url.startswith("https://"):
        url = "http://" + url  # Prepend "http://" if not present

    try:
        response = requests.get(url, stream=True, timeout=10)
        response.raise_for_status()  # Raise an exception for bad status codes

        # Generate a safe and unique temporary filename
        original_filename = os.path.basename(url)
        # Remove invalid characters from filename
        safe_filename = re.sub(r'[^\w\-_\. ]', '_', original_filename)
        temp_filename = f"{safe_filename}"

        # Infer file extension from content type
        content_type = response.headers['content-type']
        ext = mimetypes.guess_extension(content_type)
        if ext and not temp_filename.endswith(ext):  # Append extension if not already present
            temp_filename += ext

        with open(temp_filename, 'wb') as f:
            for chunk in response.iter_content(chunk_size=8192000):
                f.write(chunk)

        # Check if it's an image type
        kind = filetype.guess(temp_filename)
        if kind and kind.mime.startswith('image/'):
            return f"![]({url})", 0  # Return markdown image syntax if it's an image
        else:
            return read_document(temp_filename, clean, url)  # Otherwise, process as a document

    except requests.exceptions.MissingSchema:
        return "Error: Invalid URL format. Even after adding 'http://', the URL is still invalid.", 0
    except requests.exceptions.ConnectionError:
        return "Error: Could not connect to the server. Please check your internet connection.", 0
    except requests.exceptions.Timeout:
        return "Error: Connection timed out while trying to fetch the URL.", 0
    except requests.exceptions.RequestException as e:
        return f"Error downloading file: {e}", 0

# --- Web Page Content Extraction Functions (from previous code) ---

def extract_texts(soup):
    """Extracts all text content from the soup."""
    return [text for text in soup.stripped_strings]

def extract_links(soup, base_url):
    """Extracts all valid links from the soup."""
    links = []
    for link in soup.find_all('a', href=True):
        href = link['href']
        # Use urljoin to create an absolute URL
        full_url = urljoin(base_url, href) if not href.startswith(("http://", "https://")) else href
        link_text = link.get_text(strip=True) or "No Text"
        links.append({"Text": link_text, "URL": full_url})
    return links

def extract_images(soup, base_url):
    """Extracts all valid image URLs and their alt text from the soup."""
    images = []
    for img in soup.find_all('img', src=True):
        img_url = img['src']
        # Use urljoin to create an absolute URL
        full_img_url = urljoin(base_url, img_url) if not img_url.startswith(("http://", "https://")) else img_url
        alt_text = img.get('alt', 'No Alt Text')
        images.append({"Alt Text": alt_text, "Image URL": full_img_url})
    return images

def fetch_page_content(url):
    """Fetches the content of the page at the given URL."""
    try:
        response = requests.get(url, timeout=10)
        response.raise_for_status()
        return response.text
    except requests.exceptions.RequestException as e:
        return f"Error fetching the URL: {e}"

def format_detailed_output(structured_data):
    """Formats the structured data into a Markdown string."""
    result = "### Structured Page Content\n\n"
    result += "**Texts:**\n" + (" ".join(structured_data["Texts"]) if structured_data["Texts"] else "No textual content found.") + "\n\n"
    result += "**Links:**\n"
    if structured_data["Links"]:
        result += "\n".join(f"[{link['Text']}]({link['URL']})" for link in structured_data["Links"]) + "\n"
    else:
        result += "No links found.\n"
    result += "**Images:**\n"
    if structured_data["Images"]:
        result += "\n".join(f"![{img['Alt Text']}]({img['Image URL']})" for img in structured_data["Images"]) + "\n"
    else:
        result += "No images found.\n"
    return result

def extract_page_content(url):
    """Extracts and formats the content of the page at the given URL."""
    page_content = fetch_page_content(url)
    if "Error" in page_content:
        return page_content
    soup = BeautifulSoup(page_content, 'html.parser')
    structured_data = {
        "Texts": extract_texts(soup),
        "Links": extract_links(soup, url),  # Pass the base URL
        "Images": extract_images(soup, url)  # Pass the base URL
    }
    return format_detailed_output(structured_data)

# --- Gradio Interface ---

iface = gr.Interface(
    fn=download_and_process_file,
    inputs=[
        gr.Textbox(lines=1, placeholder="Enter URL of the file"),
        gr.Checkbox(label="Clean Text", value=True),
    ],
    outputs=[
        gr.Markdown(label="Document Content/Image Markdown/Web Page Content"),
        gr.Number(label="Document Length (characters)"),
    ],
    title="Enhanced File and Web Page Processor for Hugging Face Chat Tools",
    description="Enter the URL of an image, video, document, or web page. The tool will handle it accordingly: images will be displayed as Markdown, documents will have their text extracted, and web pages will have their content structured and displayed. This tool is designed for use with Hugging Face Chat Tools. \n [https://hf.co/chat/tools/66f1a8159d41ad4398ebb711](https://hf.co/chat/tools/66f1a8159d41ad4398ebb711)",
    concurrency_limit=None
)

iface.launch()