SoftwareTeam / app.py
Csplk's picture
Update app.py
fad85d2 verified
raw
history blame
4.86 kB
import os
import requests
from markdownify import markdownify as md
from requests.exceptions import RequestException
import re
from transformers.agents import (
ReactCodeAgent,
ReactJsonAgent,
HfApiEngine,
ManagedAgent,
stream_to_gradio,
Tool,
)
from transformers.agents.search import DuckDuckGoSearchTool
import gradio as gr
import datetime
from huggingface_hub import login
# Log in to Hugging Face
hf_token = os.getenv("hf_token")
login(hf_token)
model = "meta-llama/Meta-Llama-3.1-70B-Instruct"
# Define the VisitWebpageTool
class VisitWebpageTool(Tool):
name = "visit_webpage"
description = "Visits a webpage at the given url and returns its content as a markdown string."
inputs = {
"url": {
"type": "string",
"description": "The url of the webpage to visit.",
}
}
output_type = "text"
def forward(self, url: str) -> str:
try:
response = requests.get(url)
response.raise_for_status()
markdown_content = md(response.text).strip()
markdown_content = re.sub(r"\n{3,}", "\n\n", markdown_content)
return markdown_content
except RequestException as e:
return f"Error fetching the webpage: {str(e)}"
except Exception as e:
return f"An unexpected error occurred: {str(e)}"
visit_page_tool = VisitWebpageTool()
# Set up the multi-agent system
llm_engine = HfApiEngine(model)
# Agent to clarify specifics
clarify_agent = ReactJsonAgent(
tools=[],
llm_engine=llm_engine,
max_iterations=20,
)
# Agent to plan the project
plan_agent = ReactJsonAgent(
tools=[],
llm_engine=llm_engine,
max_iterations=20,
)
# Agent to break the plan into tasks
task_agent = ReactJsonAgent(
tools=[],
llm_engine=llm_engine,
max_iterations=20,
)
# Agent to execute tasks
execute_agent = ReactCodeAgent(
tools=[],
llm_engine=llm_engine,
max_iterations=20,
additional_authorized_imports=['requests', 'bs4']
)
# Agent to review code
review_agent = ReactCodeAgent(
tools=[],
llm_engine=llm_engine,
max_iterations=20,
additional_authorized_imports=['requests', 'bs4', 'transformers']
)
# Agent to revise code
revise_agent = ReactCodeAgent(
tools=[],
llm_engine=llm_engine,
max_iterations=20,
)
# Managed agents
managed_clarify_agent = ManagedAgent(
agent=clarify_agent,
name="clarify_agent",
description="Clarifies project specifics if not given in the project description.",
)
managed_plan_agent = ManagedAgent(
agent=plan_agent,
name="plan_agent",
description="Plans the project.",
)
managed_task_agent = ManagedAgent(
agent=task_agent,
name="task_agent",
description="Breaks the plan into tasks.",
)
managed_execute_agent = ManagedAgent(
agent=execute_agent,
name="execute_agent",
description="Executes the tasks.",
)
managed_review_agent = ManagedAgent(
agent=review_agent,
name="review_agent",
description="Reviews the code written in completion of tasks.",
)
managed_revise_agent = ManagedAgent(
agent=revise_agent,
name="revise_agent",
description="Revises the code if needed.",
)
# Manager agent
manager_agent = ReactCodeAgent(
tools=[],
llm_engine=llm_engine,
managed_agents=[
managed_clarify_agent,
managed_plan_agent,
managed_task_agent,
managed_execute_agent,
managed_review_agent,
managed_revise_agent,
],
additional_authorized_imports=["time", "datetime"],
)
# Implement the Gradio interface
def interact_with_agent(task):
messages = []
messages.append(gr.ChatMessage(role="user", content=task))
yield messages
try:
for msg in stream_to_gradio(manager_agent, task):
messages.append(msg)
yield messages + [
gr.ChatMessage(role="assistant", content="⏳ Task not finished yet!")
]
except Exception as e:
messages.append(gr.ChatMessage(role="assistant", content=f"Error: {str(e)}"))
yield messages
with gr.Blocks() as demo:
gr.Markdown("# Multi-agent Software Team")
gr.Markdown("Gradio space based on the multiagent_web_assistant cookbook https://huggingface.co/learn/cookbook/multiagent_web_assistant")
text_input = gr.Textbox(lines=1, label="Project Description", value="Create a simple web app that allows users to upload images and apply filters.")
submit = gr.Button("Start Project Development")
chatbot = gr.Chatbot(
label="Agent",
type="messages",
avatar_images=(
None,
"https://em-content.zobj.net/source/twitter/53/robot-face_1f916.png",
),
)
submit.click(interact_with_agent, [text_input], [chatbot])
if __name__ == "__main__":
demo.launch(share=True)